动态规划--

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程

动态规划与分治方法类似,都是通过组合子问题的解来求解原问题的。再来了解一下什么是分治方法,以及这两者之间的差别。分治方法将问题划分为互不相交的子问题,递归的求解子问题,再将它们的解组合起来,求出原问题的解。而动态规划与之相反,动态规划应用于子问题重叠的情况,即不同的子问题具有公共的子子问题(子问题的求解是递归进行的,将其划分为更小的子子问题)。在这种情况下,分治方法会做许多不必要的工作,他会反复求解那些公共子子问题。而动态规划对于每一个子子问题只求解一次,将其解保存在一个表格里面,从而无需每次求解一个子子问题时都重新计算,避免了不必要的计算工作。

例如
斐波那契 递归算法

#include<iostream>
using namespace std;
long long Fibonacci(unsigned int n)
{
    if(n <= 0)
        return 0;

    if(n == 1)
        return 1;

    return Fibonacci(n - 1) + Fibonacci(n - 2);
}
	int main(){
		unsigned int n;
		cin>>n;
		for(int i=1;i<=n;i++){
			cout<<Fibonacci(i)<<" ";
		}
		return 0;	
	}

非递归 DP思想

#include<iostream>
#include<vector>
using namespace std;

long long  Fibonacci(int n) {
        
    vector<long long int> f(n + 1, 0);
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
        for (int i = 3; i <= n; i++) //避免子问题重复计算 
        {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f[n];
}

int main(){
	int n;
	cin>>n;
	cout<<Fibonacci(n);
}

适用条件
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性 。
最优化原理(最优子结构性质)
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质 。
无后效性
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性 。
子问题的重叠性
动态规划算法的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其他的算法。选择动态规划算法是因为动态规划算法在空间上可以承受,而搜索算法在时间上却无法承受,所以我们舍空间而取时间 。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值