2025春晚刘谦魔术揭秘魔术过程

2025春晚刘谦魔术揭秘魔术过程

首先来看全过程

将杯子,筷子,勺子以任意顺序摆成一排

1.筷子和左边物体交换位置

2.杯子和右边物体交换位置

3.勺子和左边物体交换位置

最终魔术的结果是右手出现了杯子

这个就是一个简单的分类讨论的问题。

今年的魔术也是相当的保守了

下面我们进行一个专业的分析。

数学模型分析

操作约束条件

  • 操作1:筷子最多只能移动到中间位置
  • 操作2:杯子最少会停留在中间位置
  • 操作3:勺子最多能移动到中间位置

状态转移矩阵

我们使用排列组合表示道具状态:

from itertools import permutations

# 生成所有初始排列(共6种)
all_permutations = list(permutations(['杯', '筷', '勺']))
print("所有初始排列:", all_permutations)

image-20250128220426708

解密

这里我写了一个代码,就演示了所有的可能

from itertools import permutations

# 定义魔术操作流程
def magic_operations(arr):
    ops = [
        lambda a: (a.index('H') > 0 and (a.insert(a.index('H')-1, a.pop(a.index('H'))) or a)) or a,  # 筷子左交换
        lambda a: (a.index('C') < len(a)-1 and (a.insert(a.index('C')+1, a.pop(a.index('C'))) or a)) or a,  # 杯子右交换
        lambda a: (a.index('S') > 0 and (a.insert(a.index('S')-1, a.pop(a.index('S'))) or a)) or a  # 勺子左交换
    ]
    for op in ops: arr = op(arr.copy())
    return arr

# 生成所有可能排列并验证
results = {p: magic_operations(list(p)) for p in permutations(['C', 'H', 'S'])}

# 打印验证结果
print("\n".join([f"初始排列 {k}: → 最终结果 {v} (杯子{'✅' if v[-1]=='C' else '❌'}在右侧)" 
               for k, v in results.items()]))

这里的C是Cup杯子的意思 H是Chopsticks 筷子的意思 S为Spoon勺子的意思。

可以看到所有的结果都显示杯子在最右侧

image-20250128220825364

如果这个不够直观,我们用一个直观的代码来演示:

这里用到了中文变量名。

from itertools import permutations

def 魔术流程(初始排列):
    """带中文标识的优化版魔术流程"""
    道具 = ['杯', '筷', '勺']
    记录 = [初始排列.copy()]
    
    # 操作1:筷子左交换
    if (位置 := 初始排列.index('筷')) > 0:
        初始排列.insert(位置-1, 初始排列.pop(位置))
    记录.append(初始排列.copy())
    
    # 操作2:杯子右交换
    if (位置 := 初始排列.index('杯')) < len(初始排列)-1:
        初始排列.insert(位置+1, 初始排列.pop(位置))
    记录.append(初始排列.copy())
    
    # 操作3:勺子左交换
    if (位置 := 初始排列.index('勺')) > 0:
        初始排列.insert(位置-1, 初始排列.pop(位置))
    记录.append(初始排列.copy())
    
    return 记录

# 生成所有排列组合
所有可能性 = {p: 魔术流程(list(p)) for p in permutations(['杯', '筷', '勺'])}

# 打印完整过程
for 初始状态, 过程记录 in 所有可能性.items():
    print(f"\n▶ 初始:{list(初始状态)}")
    print(f"① 筷子左交换 → {过程记录[1]}")
    print(f"② 杯子右交换 → {过程记录[2]}") 
    print(f"③ 勺子左交换 → {过程记录[3]}")
    print(f"🔍 验证结果:{'✅ 成功' if 过程记录[-1][-1] == '杯' else '❌ 失败'}")

# 统计验证结果
成功次数 = sum(1 for 记录 in 所有可能性.values() if 记录[-1][-1] == '杯')
print(f"\n📊 最终统计:{len(所有可能性)} 种排列全部成功,成功率 100%")

输出结果如下

▶ 初始:[‘杯’, ‘筷’, ‘勺’]
① 筷子左交换 → [‘筷’, ‘杯’, ‘勺’]
② 杯子右交换 → [‘筷’, ‘勺’, ‘杯’]
③ 勺子左交换 → [‘勺’, ‘筷’, ‘杯’]
🔍 验证结果:✅ 成功

▶ 初始:[‘杯’, ‘勺’, ‘筷’]
① 筷子左交换 → [‘杯’, ‘筷’, ‘勺’]
② 杯子右交换 → [‘筷’, ‘杯’, ‘勺’]
③ 勺子左交换 → [‘筷’, ‘勺’, ‘杯’]
🔍 验证结果:✅ 成功

▶ 初始:[‘筷’, ‘杯’, ‘勺’]
① 筷子左交换 → [‘筷’, ‘杯’, ‘勺’]
② 杯子右交换 → [‘筷’, ‘勺’, ‘杯’]
③ 勺子左交换 → [‘勺’, ‘筷’, ‘杯’]
🔍 验证结果:✅ 成功

▶ 初始:[‘筷’, ‘勺’, ‘杯’]
① 筷子左交换 → [‘筷’, ‘勺’, ‘杯’]
② 杯子右交换 → [‘筷’, ‘勺’, ‘杯’]
③ 勺子左交换 → [‘勺’, ‘筷’, ‘杯’]
🔍 验证结果:✅ 成功

▶ 初始:[‘勺’, ‘杯’, ‘筷’]
① 筷子左交换 → [‘勺’, ‘筷’, ‘杯’]
② 杯子右交换 → [‘勺’, ‘筷’, ‘杯’]
③ 勺子左交换 → [‘勺’, ‘筷’, ‘杯’]
🔍 验证结果:✅ 成功

▶ 初始:[‘勺’, ‘筷’, ‘杯’]
① 筷子左交换 → [‘筷’, ‘勺’, ‘杯’]
② 杯子右交换 → [‘筷’, ‘勺’, ‘杯’]
③ 勺子左交换 → [‘勺’, ‘筷’, ‘杯’]
🔍 验证结果:✅ 成功

📊 最终统计:6 种排列全部成功,成功率 100%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值