自学笔记|遍历循环读取文件夹所有txt,并以dataframe形式储存

文章讨论了在处理大量txt文件时,原始代码由于在循环中不断创建DataFrame对象导致速度变慢的问题。解决方案是使用列表推导式先将所有数据存入列表,然后一次性合并成DataFrame,以减少内存消耗和提高效率。这种方法在处理大数据量时更为有效。
摘要由CSDN通过智能技术生成

改之前

root = 'D:\\Mahong2018'
files = os.listdir(root)#使用os.listdir(root)获取指定目录下的所有文件名,并存储在变量files中

df = pd.DataFrame()
for file in files:
    position = root + '\\' + file
    print(position)
    data=pd.read_csv(position, sep='\t', encoding='utf-8',header=0)#,error_bad_lines=False,skiprows=[0],
    df=pd.concat([df,data])

print(df)
#df.to_excel('D:\\2018所有.xlsx',index=False)#行数太多,excel不能保存那么多行(Max sheet size is: 1048576, 16384)
df.to_csv('D:\\2018所有.txt', sep='\t',index=False)

问题:我的文件夹里有6000个txt,读到一半的时候速度很慢(后面还会越来越慢)

原因:在每次循环中都创建了新的DataFrame对象,导致内存消耗和操作时间不断增加。

解决办法:使用列表推导式将所有读取的DataFrame对象存放在列表中,最后通过concat()函数一次性将它们合并为一个DataFrame对象

改之后

root = 'D:\\Mahong2019'
files = os.listdir(root)
start_time = time.time()
df_list = []
for file in files:
    position = root + '\\' + file
    print(position)
    data=pd.read_csv(position, sep='\t', encoding='utf-8',header=0)#,error_bad_lines=False,skiprows=[0],
    df_list.append(data)
df = pd.concat(df_list, ignore_index=True)#ignore_index=True用于重新生成索引

print(df)
#df.to_excel('D:\\Data-Mahong\\2018所有.xlsx',index=False)#行数太多,excel不能保存那么多行(Max sheet size is: 1048576, 16384)
df.to_csv('D:\\2019所有.txt', sep='\t',index=False)

转化结果

后记:这两个程序都能用,我觉得数据量小的情况下第一种更好理解一点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值