XCT原理

X射线计算机断层成像(X-CT)

运用物理技术,以测定X射线在人体内的衰减系数为基础,采用数学方法,经计算机处理求解出衰减系数值在人体某剖面上的二维分布矩阵,转变为图像画面上的灰度分布,从而实现重新建立断面图像的现在医学成像技术。
主要问题:如何确定衰减系数值在人体某剖面上的二维分布。

概念介绍

  1. 断层:受检体内接受检查并欲建立图像的薄层,又称为体层。断层有一定厚度,两个表面可视为平行的平面,
  2. 解剖断面:断层标本的表面。断层图例
  3. 体素:在受检体内欲成像的断层表面上,按一定大小和一定坐标认为划分的很小的体积元。对划分好的体素要进行空间位置编码,这就形成了具有坐标排序的体素阵列。重建CT像的任务就是求出每个体素的衰减系数值,从而获取衰减系数值在欲成像断层上的分布矩阵。
  4. 像素:在图像平面上划分很小的单元,它是构成一幅图像的最小点,是构成图像的基本单元。同样大的图像,像素划分的越多,像素就越小,图像画面就应越细腻,携带的生物信息量就应越大。像素与体素在坐标上要一一对应。
    体素与像素

图像重建的数学方法

一般有三种方法:联立方程法、迭代法、(滤波)反投影法
MemXCT中使用的应该是迭代法

在这里插入图片描述在这里插入图片描述### 迭代法
步骤如下

  1. 先假设图像的每个像素具有适当的相同初始μ值。
  2. 然后从某个给定视角计算该方向的投影值,并把它与实际测出投影值进行比较,根据其差值计算出修正值
    修 正 值 = 投 影 差 值 / n 修正值=投影差值 / n =/n
    n为矩阵的行数或列数(根据给定视角确定n)
  3. 把修正值加到相关像素μ值上,完成一次迭代。
  4. 对其他不同视角重复进行上述过程,并完成一次次;知道修正值为0或者很小,像素的μ值逐渐逼近真实值。

栗子
在这里插入图片描述

在这里插入图片描述

参考文档:X射线特性研究及XCT

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值