自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI速递

人工智能的研究,公众号【AI速递】同步,热衷于论文分析,分享知识:计算机视觉,大数据,图像处理等相关技术文章

  • 博客(25)
  • 收藏
  • 关注

原创 《TensorFlow 2.0》免费开放电子版

简 要 目 录这是一本面向人工智能,特别是深度学习初学者的书,本书旨在帮助更多的读者朋友了解、喜欢并进入到人工智能行业中来,因此作者试图从分析人工智能中的简单问题入手,一步步地提出设想、分析方案以及实现方案,重温当年科研工作者的发现之路,让读者身临其境式的感受算法设计思想,从而掌握分析问题、解决问题的能力。这种方式也是对读者的基础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知识是为了解决问题而生的,避免出现为了学习而学习的窘境。尽管作者试图将读

2021-03-18 18:06:56 334 1

原创 边界IoU:改进以对象为中心的图像分割评价

我们提出了一种新的基于边界质量的分割评价方法——边界交-并。我们对不同的错误类型和对象大小进行了广泛的分析,结果表明,对于较大的对象,边界IoU比标准的掩码IoU测量对边界错误更加敏感,并且不会过度惩罚较小对象的错误。新的质量度量显示了几个令人满意的特征,如对称的w.r.t .预测/基本真理对和跨尺度的平衡响应,这使得它比其他边界聚焦度量更适合于分割评估。基于边界IoU,我们通过分别提出边界AP(平均精度)和边界PQ(全景质量)度量来更新实例和全景分割任务的标准评估协议。我们的实验表明,新的评估指标跟踪边.

2021-04-01 20:42:42 736

原创 面向语义分割的无源领域自适应

面向语义分割的无源领域自适应Source-Free Domain Adaptation for Semantic SegmentationY uang Liu , Wei Zhang*, Jun Wang*East China Normal University, Shanghai, China{frankliu624, zhangwei.thu2011, wongjun}@http://gmail.com无监督领域自适应(UDA)可以解决基于卷积神经网络(CNN)的语义分割方法严重依赖像素级标

2021-04-01 08:44:29 700

原创 2021年3月31最新论文(计算机视觉,图像分割,图像识别,图像分类)

【1-66】移步到公众号:AI速递[67] Classifying Video based on Automatic Content Detection Overview作者 | Yilin Wang, Jiayi Ye链接 | https://arxiv.org/abs/2103.15323[68] TFPose: Direct Human Pose Estimation with Transformers作者 | Weian Mao, Yongtao Ge, Chunhua Shen, Zh

2021-03-31 14:59:50 2868

原创 计算机视觉2021年3月28最新论文

编辑 | | AI速递计算机视觉 3月28日【1】 USB: Universal-Scale Object Detection Benchmark标题:USB:万能物体检测基准链接:https://arxiv.org/abs/2103.14027【2】 Multi-Target Domain Adaptation via Unsupervised Domain Classification for Weather Invariant Object Detection标题:天气不变目标检测中基

2021-03-29 08:36:09 1644

原创 基于改进Mask R-CNN的模糊图像实例分割的研究

摘 要:Mask R-CNN是现阶段实例分割相对成熟的方法,针对Mask R-CNN算法当中还存在的分割边界精度以及对于模糊图片鲁棒性较差等问题,该文提出一种基于改进的Mask R-CNN实例分割方法。该方法首先提出在Mask分支上使用卷积化条件随机场(ConvCRF)来优化Mask分支对于候选区域进一步分割,并使用FCN-ConvCRF分支来代替原有分支;之后提出新锚点大小和IOU标准,使得RPN候选框能够涵盖所有实例区域;最后使用一种添加部分经过转换网络转换的数据进行训练的方法。总的mAP值与原算法

2021-03-29 08:34:59 1447 1

原创 CUDA教程–古典密码学分析 使用现代GPU和CUDA的密码

CUDA Tutorial – Cryptanalysis of Classical Ciphers Using Modern GPUs and CUDACUDA教程–古典密码学分析使用现代GPU和CUDA的密码1 介绍CUDA(以前是Compute Unified Device Architecture的缩写)是一种Nvidia创建的并行计算平台和API模型允许软件开发人员可以使用支持CUDA的图形处理单元(GPU)进行常规目的处理1在本教程中,我们以易于理解的方式介绍了CUDA概念。互动方式。

2021-03-28 20:08:19 346

原创 深度无人机的视觉检测与跟踪神经网络:性能基准

Unmanned Aerial Vehicle Visual Detection and Tracking using DeepNeural Networks: A Performance Benchmark深度无人机的视觉检测与跟踪神经网络:性能基准摘要—无人机(UAV)可能会造成由于疏忽和疏忽造成的重大航空安全风险恶意使用。因此,自动检测和跟踪无人机是空中安全系统的一项基本任务。无人机检测的常见技术包括可见带以及红外热成像,射频和雷达。深度神经网络(DNN)用于基于图像的对象检测的最新进展为将视觉

2021-03-28 20:07:46 1320

原创 DRANet:分解表示和适应网络用于无监督的跨域自适应

DRANet: Disentangling Representation and Adaptation Networksfor Unsupervised Cross-Domain Adaptation分解表示和适应网络用于无监督的跨域自适应 https://arxiv.org/pdf/2103.13447.pdf文献路径在本文中,我们提出了一种网络架构DRANet解开图像表示并转移潜在空间中的视觉属性,用于无监督的跨域自适应。与现有的域适应不同学习共享域相关功能的方法,DRANet保留了每个

2021-03-27 10:01:15 1035

原创 USB:通用尺度物体检测基准

USB: Universal-Scale Object Detection Benchmark通用尺度物体检测基准基准(例如COCO)在对象中起着至关重要的作用检测。但是,现有的基准是不够的规模变化,他们的协议不足以公平的比较。在本文中,我们介绍了UniversalScale对象检测基准(USB)。USB通过整合USB在对象比例和图像域方面有所变化COCO与最近提出的Waymo开放数据集和Manga109-s数据集。为了进行公平的比较,我们通过定义多个阈值来建议USB协议训练纪元和评估图像分辨率。通过

2021-03-26 20:50:27 432

原创 AutoLoss-Zero:从头开始寻找通用任务的损失函数

Searching Loss Functions from Scratch for Generic Tasks从头开始寻找通用任务的损失函数自动化方面已取得重大进展深度网络中各种组件的设计。但是,针对一般任务的损失函数的自动设计各种评估指标的研究仍不足。以前有关手工制作损失功能的工作严重依赖依靠人类的专业知识,这限制了它们的可扩展性。同时,现有的寻找损失函数的努力主要是重点关注特定任务和特定指标,以及特定于任务的试探法。这类作品是否可以延期通用任务的验证和质疑。在这个在本文中,我们提出了AutoLos

2021-03-26 20:48:46 250

原创 2021年3月26最新论文(计算机视觉,图像分割,图像识别,图像分类)

[1]-----------------------------------------------------[25][26] Generative-Adversarial-Networks-based Ghost Recognition基于生成-专家网络的幽灵识别链接 | https://arxiv.org/abs/2103.13858[27] Hierarchical Deep CNN Feature Set-Based Representation Learning for Robust

2021-03-26 20:27:56 935

原创 End-to-End:带有变压器的端到端可训练多实例姿势估计

End-to-End Trainable Multi-Instance Pose Estimation with TransformersEnd-to-End:带有变压器的端到端可训练多实例姿势估计链接PFD我们提出了一种新的端到端可培训方法,用于结合卷积的多实例姿态估计带变压器的神经网络。我们投射多实例姿势图像估计作为直接集预测问题。受到端到端可训练对象检测的最新工作的启发对于变压器,我们使用变压器编码器-解码器架构以及双向匹配方案来直接使给定图像中所有个体的姿势回归。我们的模型被称为POse E

2021-03-25 11:03:47 347

原创 GANmNet:生成最小化网络,无竞争地训练GAN

Generative Minimization Networks: Training GANs Without Competition生成最小化网络:无竞争地训练GAN机器学习中的许多应用可以框架化为最小化问题,并使用基于梯度的技术有效地解决了问题。 然而,生成模型(尤其是GAN)的最新应用引起了人们对求解的兴趣标准优化的最小最大游戏技术通常不适合。 在已知之中从业人员遇到的问题是缺乏收敛保证或收敛到非最佳循环。 这些问题的核心是GAN目标的最小-最大结构,该结构在参与者之间产生了非平凡的依赖关系。 我

2021-03-25 08:45:58 113

原创 DCGAN(深度卷积生成对抗网络)

深度卷积生成对抗网络的无监督表示学习近年来,卷积网络的监督学习在计算机视觉应用中得到了广泛的应用。相比之下,使用中枢神经系统的无监督学习受到的关注较少。在这项工作中,我们希望帮助弥合监督学习和非监督学习的中枢神经系统之间的差距。我们引入了一类称为深度卷积生成对抗网络(DCGANs)的CNNs,它们具有一定的体系结构约束,并证明了它们是无监督学习的强有力的候选对象。在各种图像数据集上进行训练,我们展示了令人信服的证据,表明我们的深度卷积对抗对在生成器和鉴别器中学习了从对象部分到场景的表示层次。此外,我们将所

2021-03-24 19:30:45 593 1

原创 HaloNets:全新Backbone来了

HaloNets:Scaling Local Self-Attention For Parameter Efficient Visual Backbones本文提出了两种自注意力的扩展,可以提高模型的速度和准确性。还提出一种新的自注意力模型家族,优于EfficientNet,Vit等,代码即将开源。Scaling Local Self-Attention For Parameter Efficient Visual Backbones由于感受野与参数无关的缩放和内容相关的相互作用,与卷积与参数有关的

2021-03-24 15:42:24 1499

原创 LAPGAN(拉普拉斯生成对抗网络)

1:摘要在本文中,我们介绍了一种能够生成的生成参数模型高品质的自然图像样本。 我们的方法使用拉普拉斯金字塔框架内的级联卷积网络来生成图像从粗到细的方式。 在金字塔的每个层次上,都使用生成对抗网络(GAN)的方法来训练一个单独的生成convnet模型[10]。从我们的模型中抽取的样本比其他样本具有更高的质量方法。 在人工评估人员的定量评估中,我们的CIFAR10样本被误认为是真实图像的时间约为40%,而误判为10%从GAN基线模型中提取的样本。 我们还显示了来自模型的样本在LSUN场景数据集的高分辨率图像.

2021-03-23 18:09:54 1392

原创 2021年3月23计算机视觉最新论文(图像分割,图像识别,图像分类等)

[31] Multimodal Motion Prediction with Stacked Transformers标题 |堆叠式变压器的多模态运动预测链接 | https://arxiv.org/abs/2103.11624[32] Progressive and Aligned Pose Attention Transfer for Person Image Generation标题 | 用于人图像生成的渐进式和对齐式姿势注意转移链接 | https://arxiv.org/abs/2103

2021-03-23 17:54:31 1885 1

原创 CGAN-条件生成式对抗网络

1:Generative Adversarial Nets生成对抗网络最近被引入作为一种训练生成模型的新方法。它们由两个“对抗性”模型组成:生成模型G捕获数据分布,还有一个判别模型D,该模型估计样本来自训练的概率数据而不是G。G和D都可以是非线性映射函数,例如多层感知器。要了解数据数据x上的生成器分布pg,生成器可从中构建映射函数到数据空间的先前噪声分布pz(z)为G(z;θg)。 鉴别器D(x;θd)输出一个单一的标量,表示x来自训练数据而不是pg的概率。 G和D都同时训练:我们调整G的参数以使lo.

2021-03-22 18:42:12 792

原创 图像分割,图像识别,图像分类 | 计算机视觉论文速递

[1] Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation标题 | 弱和半监督语义分割的反专业操作归因链接 | https://arxiv.org/abs/2103.08896[2] Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling标题 | 空间依

2021-03-22 18:19:31 753

原创 GAN生成对抗神经网络(Generative Adversarial Nets)

摘要:我们提出了一个新的框架来通过对抗过程来估计生成模型,在该框架中,我们同时训练了两个模型:生成模型G捕获数据分布,以及判别模型D估计样本来自训练数据而不是G的概率。G的训练过程是使D犯错的概率最大化。 这框架对应于一个minimax两人游戏。 在任意空间功能G和D,存在唯一的解决方案,其中G恢复训练数据分布和D等于12到处。 在定义了G和D的情况下通过多层感知器,可以对整个系统进行反向传播训练。在训练或样本生成期间,不需要任何马尔可夫链或展开的近似推理网络。实验证明通过定性和定量评估框架的潜力生成的样

2021-03-21 18:28:26 644 2

原创 想从事人工智能方面,需要自学什么?

学习人工智能,你要先确定方向,方向很重要,选错了,那你就是浪费时间,就算选对了,你可能也需要花很多很多时间去学习相关的知识。具体学什么,你最好多查找一些资料,多方面对比一下。我下面就以学习人工智能当中计算机视觉去阐述说明,需要学什么。1:你首先需要学python语言,python语言是人工智能当中必会的编程语言,很多框架,算法,都是使用在python语言编程的,比如pytorch框架跟python语言很像很像,还有学习计算机视觉,需要展示图片,展示神经网络的学习进度,学习数据等,都需要使用python语言

2021-03-21 09:42:48 2089

原创 计算机视觉论文

[1] Temporal Cluster Matching for Change Detection of Structures from Satellite Imagery标题 | 时态聚类匹配用于卫星影像结构变化检测链接 | https://arxiv.org/abs/2103.09787[2] ALADIN: All Layer Adaptive Instance Normalization for Fine-grained Style Similarity标题 | 细粒度样式相似的全层自适.

2021-03-20 19:54:00 1216 3

原创 计算机视觉论文速递

编辑 | | AI速递计算机视觉 3月19日[1] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild标题:野外交互式视频对象分割中推荐帧的学习链接:https://arxiv.org/abs/2103.10391[2] Investigate Indistinguishable Points in Semantic Segmentation of 3D Point Cloud标题:

2021-03-19 19:01:41 1093 4

原创 深度神经网络的图像语义分割研究综述

随着深度学习的迅速发展并广泛应用到语义分割领域,语义分割效果得到了显著的提升。本文主要对基于深度神经网络的图像语义分割方法和研究现状进行了详细的综述。根据网络训练方式的不同,将现有的方法分为全监督学习图像语义分割方法和弱监督学习图像语义分割方法,对每类方法中代表性算法的效果以及优缺点进行分析介绍,并系统地阐述了深度神经网络对语义分割领域的贡献。然后,归纳了当前主流的公共数据集和遥感数据集,并在此基础对比主流图像语义分割方法的实验结果。最后,对语义分割技术面临的挑战以及未来工作的发展方向进行了展望

2021-03-18 17:56:12 1669 1

03-主流框架-05-zookeeper.doc

03-主流框架-05-zookeeper.doc

2022-10-14

03-主流框架-04-dubbo.doc

03-主流框架-04-dubbo.doc

2022-10-14

03-主流框架-03-maven高级.doc

03-主流框架-03-maven高级.doc

2022-10-14

03-主流框架-02-spring-MVC.doc

03-主流框架-02-spring-MVC.doc

2022-10-14

03-主流框架-01-spring.doc

03-主流框架-01-spring.doc

2022-10-14

02-javaweb-13-WEB项目实战-前台系统3.doc

02-javaweb-13-WEB项目实战-前台系统3.doc

2022-10-14

13-WEB项目实战-黑马页面2.doc

13-WEB项目实战-黑马页面2.doc

2022-10-14

02-javaweb-13-WEB项目实战-黑马面面01.doc

02-javaweb-13-WEB项目实战-黑马面面01.doc

2022-10-14

02-javaweb-12-Maven.doc

02-javaweb-12-Maven.doc

2022-10-14

02-javaweb-11-redis.doc

02-javaweb-11-redis.doc

2022-10-14

02javaweb-10-Vue.doc前端开发

02javaweb-10-Vue.doc前端开发

2022-10-14

02-javaweb-08-JQuery.doc

02-javaweb-08-JQuery.doc

2022-10-14

02javaweb-07-JavaScript.docx

02javaweb-07-JavaScript.docx

2022-10-14

02-javaweb-06-Mybatis.doc

02-javaweb-06-Mybatis.doc

2022-10-14

02-javaweb-04mysql数据库

02-javaweb-04mysql数据库

2022-10-14

01_spring.doc

01_spring.doc

2022-10-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除