Hyperspectral Band Selection A review
当前的高光谱波段选择方法,该方法可以分为六个主要类别:基于排序,基于搜索,基于聚类,基于稀疏性,基于嵌入学习和基于混合方案。
基于排序的方法根据预定义的频段优先级标准量化每个频谱带的重要性,并按排序的顺序选择排名靠前的频段。 根据是否使用标记的训练样本,基于排名的方法可以进一步分为两种类型,即无监督的和有监督的。
无监督标准会考虑频段的信息,相异性或相关性。 例如,指标包括方差,一阶光谱导数,频谱比,对比度测量,信噪比(SNR),三阶统计量(偏度),四阶统计量(峰度),k阶统计量,负熵, 熵和信息散度通常被用来区分频段的优先级。
基于排序的方法(无监督)
高信息标准:
采用主成分分析(PCA)对波段图像的能量或方差进行排序,最小方差PCA (MVPCA) 和最大信噪比PCA (MSNRPCA)。
(1) PCA (MVPCA):基于方差的频带功率比对所有频带进行排序。MSNRPCA相对于MVPCA的优点是在PCA之前对噪声进行了白化处理,以消除噪声的影响。
(2) Kullback–Leibler distance(相对熵),基于Kullback-Leibler距离的发散带去关系方案去除冗余或不显著的波段。如果两个波段之间的分歧低于预先定义的阈值,低优先级的波段被删除。后来,互信息(MI)被用来衡量的波段差异。
(3) 基于协方差的方法通过匹配滤波器和自适应相干估计器对所有光谱波段进行优先排序,以最大限度地减少它们对目标检测的影响。
关联度很低的标准:
所选波段必须具有低的相互相关性。尽量减少相关的选择波段。
(1) 约束频带选择(CBS)方法采用约束能量最小化(CEM)来线性约束频带图像,同时最小化其他频带图像提供的频带相关性(BC)或依赖性。
(2) 使用四个不同的标准扩展了CEM-CBS问题的解决方案,即带相关最小化(BCM),带相关约束,带相关约束和带相关最小化。
(3) 由于从波段图像转换的向量维数巨大,因此需要大量的计算时间。因此,开发了线性约束MV (LCMV)-CBS,将带图像约束为不需要向量转换的图像矩阵,大大降低了计算复杂度。后来,受约束的多频带选择(CMBS)扩展了CEM-CBS并实现了LCMV以同时约束和选择多个频带
(4) 在[27]中,提出了基于分形维数的最优波段指数准则,量化各波段间光谱和空间信息的相关性,进行波段选择。
(5) 基于光谱冗余和带去关系,采用局部曲线拟合技术[28]对曲线拟合产生的平均反射率与平滑平均反射率的绝对差进行排序,选择最优波段。
极大不相似准则:
所选波段应该是彼此不相似的。
(1) 受[29]中基于快速密度峰值聚类(FDPC)算法的启发,提出了一种基于排序的样本成分分析算法,用于自动从所有频带中寻找聚类中心。该算法只需要测量所有成对波段之间的距离,不需要参数化概率密度函数。
(2) E-FDPC算法通过加权局部密度和内距离来计算各频带的等级分数,并引入指数学习规则来合理确定截止阈值。
基于排序的方法(监督)
分类目标标准:
(1) 最小错误分类规范分析(MMCA)来根据频段的分类能力对频段进行排名。 MMCA源自Fisher的判别函数,旨在通过解决广义特征值问题来最大程度地减少选定频段的误分类误差。可以通过定义频带功率比来衡量待分类频带的误分类率。
(2) 基于可分性准则和矩阵系数分析的特征加权频带选择算法。该算法通过主成分去相关,通过评价对应的主成分系数和判据值,对每个类进行带级排序。利用投票技术确定各波段的权重进行排序,并通过相关阈值去除冗余波段。之后采用相位相关[34]作为相关测量,去除冗余带。
(3) 在[35]中,训练了一个非齐次隐马尔可夫链模型,并将其应用于小波变换训练和测试样本。NHMC用每个波段的所有成对相关系数(CCs)的平均值来量化每个波段的重要性。
光谱解混目标标准:
(1) 基于线性混合模型的正交子空间投影(OSP)[23]利用子空间投影消除不需要的特征和抑制噪声,使信噪比最大化,
(2) 变数变波段选择算法[36],根据待处理的高光谱特征选择不同的波段。VNVBS利用OSP形成一个波段优先级标准,并为每个光谱波段分配不同的优先级分数,以捕获不同的特征。
(3)