在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式。Python提供了强大的工具来读取、编辑和保存这两种文件,满足从基本读取到复杂分析的需求。本文将深入介绍CSV和Excel文件的多种处理方法,帮助你更好地管理和分析数据。
1. CSV文件的处理方法
1.1 使用csv
库读取和写入CSV文件
Python内置的csv
库是一个轻量级的工具,适合处理基本的CSV文件操作。
-
读取CSV文件:
csv.reader
csv.reader
将CSV文件中的每一行读取为一个列表,每个元素对应表中的一个字段。import csv with open('example.csv', 'r', encoding='utf-8') as file: reader = csv.reader(file) for row in reader: print(row) # 每行数据以列表形式输出
-
以字典格式读取:
csv.DictReader
DictReader
将每行数据映射为字典,适合按列名访问数据。with open('example.csv', 'r', encoding='utf-8') as file: reader = csv.DictReader(file) for row in reader: print(row) # 每行数据以字典形式输出
-
写入CSV文件:
csv.writer
csv.writer
可以将列表写入CSV文件。with open('output.csv', 'w', newline='', encoding='utf-8') as file: writer = csv.writer(file) writer.writerow(['name',