自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 YOLOX安装python3 setup.py develop报错解决

直接复制终端运行 conda install https://anaconda.org/brown-data-science/gcc/5.4.0/download/linux-64/gcc-5.4.0-0.tar.bz2安装,再运行python3 setup.py develop,成功安装。2. 报错原因gcc版本太低,需要升级。

2024-02-03 02:00:17 715 1

原创 yolov8改进DSConv(分布移位卷积),计算量骤减!提高卷积层的内存效率和速度(Conv--->DSConv2D 或 C2f--->C2f_DSConv )

中,作者引入了一种卷积层的变体,称为DSConv(分布偏移卷积),其可以容易地替换进标准神经网络体系结构并且实现较低的存储器使用和较高的计算速度。通过在VQK中仅存储整数值来实现较低的存储器使用和较高的速度,同时通过应用基于内核和基于通道的分布偏移来保持与原始卷积相同的输出。通过将浮点运算替换为整数运算,在卷积内核中实现了高达14x的内存使用量减少,并将运算速度提高了10倍。随意进行Conv--->DSConv2D 或 C2f--->C2f_DSConv 替换。1.新建DSConv.py文件。

2023-12-20 14:41:21 1663 6

原创 复现SCConv:用于特征冗余的空间和通重建卷积

卷积神经网络(CNN)在各种计算机视觉任务中取得了显着的性能,但这是以巨大的计算资源为代价的,部分原因是卷积层提取了冗余特征。在中,作者设计了一个两步程序来利用中间特征图的冗余,其目标是在不损失性能的情况下减少参数数量和计算量。通过尝试对特征之间的空间和通道冗余进行 CNN 压缩,提出一种高效的卷积模块,称为 SCConv(空间和通道重建卷积),以减少冗余计算并促进代表性特征学习。它是一个即插即用的架构单元,可以直接用来替换各种卷积神经网络中的标准卷积,无需额外修改。

2023-12-14 16:31:54 2261 3

原创 UserWarning: torch.meshgrid:警告解决

找到functional.py504行:完美解决!

2023-12-14 13:29:21 4803 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除