07_异常模块与包

文章详细介绍了Python中的异常处理机制,包括捕获常规异常、指定异常、多个异常、else和finally子句。此外,还讲解了模块的导入方式,如import和from...import,以及自定义模块和包的创建与管理。对于第三方包的使用,提到了numpy、pandas等,并介绍了使用pip安装包的方法,包括镜像源的设置。
摘要由CSDN通过智能技术生成

异常

捕获常规异常

捕获指定异常

注意事项:

①如果尝试执行的代码的异常类型和要捕获的异常类型不一致,则无法捕获异常。

②一般try下方只放一行尝试执行的代码。

捕获多个异常

当捕获多个异常时,可以把要捕获的异常类型的名字,放到except 后,并使用元组的方式进行书写。

捕获异常并输出描述信息

执行结果:

捕获所有异常

异常else

else表示的是如果没有异常要执行的代码。

异常的finally

finally表示的是无论是否异常都要执行的代码,例如关闭文件。

异常的传递性

模块

模块的导入方式

导入的语法:

import 模块名

from 模块名 import 类、变量、方法等

from 模块名 import *

import 模块名 as 别名

from 模块名 import 功能名 as 别名

制作自定义模块

案例:新建一个Python文件,命名为my_module1.py,并定义test函数

测试模块

注意事项:当导入多个模块的时候,且模块内有同名功能.当调用这个同名功能的时候,调用到的是后面导入的模块的功能

__all__

如果一个模块文件中有`__all__`变量,当使用`from xxx import *`导入时,只能导入这个列表中的元素

Python包

作用:当我们的模块文件越来越多时,包可以帮助我们管理这些模块,包的作用就是包含多个模块,但包的本质依然是模块

自定义包

创建包

导入包

方法一:

方法二:

在`__init__.py`文件中添加`__all__ = []`,控制允许导入的模块列表

第三方包

在Python程序的生态中,有许多非常多的第三方包(非Python官方),可以极大的帮助我们提高开发效率,如:

•科学计算中常用的:numpy包

•数据分析中常用的:pandas包

•大数据计算中常用的:pyspark、apache-flink包

•图形可视化常用的:matplotlib、pyecharts

•人工智能常用的:tensorflow

安装

方法一:命令提示符程序,在里面输入:pip install 包名称

我们可以通过如下命令,让其连接国内的网站进行包的安装:

pip install -ihttps://pypi.tuna.tsinghua.edu.cn/simple 包名称

方法二:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值