- 博客(15)
- 收藏
- 关注
原创 HTML学习笔记
HTML 超文本标记语言文章目录HTML 超文本标记语言网页基本信息注释DOCTYPE基本格式网页基本标签图像标签链接标签锚链接功能性链接列表表格媒体页面结构分析iframe内联框架表单语法文本框和单选框表单元素格式文本输入框列表框和文本域搜索框滑块和简单验证表单初级验证网页基本信息注释< !-- -->DOCTYPE告诉浏览器使用什么规范例如:<!DOCTYPE html>基本格式<!DOCTYPE html><html lang
2022-02-28 19:27:13 218
原创 Python 虚拟环境
Python 虚拟环境查看帮助python -m venv -h其中 --system-site-packages 是引用系统级别的库创建python -m venv venvdemo创建好后会在用户目录下创建一个 venvdemo 目录C:\Users\lyz\venvdemo>dir 驱动器 C 中的卷是 系统 卷的序列号是 5291-6C8F C:\Users\lyz\venvdemo 的目录2022/01/11 11:31 <DIR>
2022-02-23 10:56:38 497
原创 循环神经网络进行情感分析
Sentiment Analysis For RNN循环神经网络进行情感分析引言:对于情感分析,如果简化来看可以分为正向情绪和负向情绪,我们可以将情感分析视为文本分类任务,因此我们可以将预训练的词向量应用于情感分析。我们可以用预训练的GloVe模型表示每个标记,并反馈到RNN中。RNN表征文本在文本分类任务中,要将可变长度的文本序列转为固定长度。可以通过nn.Embedding()函数获得单独的预训练GloVe,再去通过双向LSTM,最后在去通过一个全连接层做一个二分类,即可实现RNN表征文本。
2022-02-23 10:55:27 1453
原创 模仿实现Linux下readelf工具部分功能
模仿实现Linux下 readelfreadelfreadelf 工具部分功能完整实现:https://github.com/JiaZhengJingXianSheng/ReadELFELF 目标文件格式的最前部是 ELF文件头 (ELF Header) ,它包含了描述整个文件的基本属性,比如 ELF 文件版本、目标机器型号、程序入口地址等。紧接是 ELF 文件各个段。其中ELF 文件中与段有关的重要结构就是 段表 (Section Header Table) ,该表描述了ELF 文件包含的所有段的
2022-02-23 10:53:57 713
原创 VGG16实现分类任务
VGG16实现分类任务VGG是2014年由牛津大学著名研究组VGG(Visual Geometry Group)提出,斩获当年ImageNet竞赛中定位任务第一名和分类任务第二名。原理图原理简述例如有张224x224的RGB图片,我们让他通过两个卷积核为3的卷积层,再通过最大池化层**(核尺寸为2,步距为2)**。至于卷积层的输入输出维度,参考下图,我们一般常用VGG16模型,最终用多个FC实现分类,也可将FC换成卷积核为1的卷积层。数据集同样选用本人常用的海贼王数据集来测试,可以根据个人需
2022-02-23 10:51:35 3243
原创 Perceptron
Perceptron原理简单的感知机可以看作一个二分类,假定我们的公式为f(x) = sign(w *x + b)我们把 -b 做为一个标准,w* x 的结果与 -b 这个标准比较,w*x > -b, f(x) = +1w *x < -b, f(x) = -1不难看出w是超平面的法向量,超平面上的向量与w的数量积为0。因此这个超平面就可以很好的区分我们的数据集。而感知机就是来寻找w和b优化方法优化方法我们现有的方法比较多,诸如GD、SGD、Minibatch、Adam
2022-02-22 19:15:48 139
原创 PDF转图片
PDF转图片完整源码:https://github.com/JiaZhengJingXianSheng/PDF2Imagex86-64 可执行文件:链接:https://pan.baidu.com/s/1Qk_SCLNtnYLSxfu0ArF5-Q提取码:at0c执行源码须自己配置依赖,需配置traits,请自行搜索解决。打包后的可执行程序链接如上。注意:程序因未作错误判定,请选择PDF文件夹时,保证文件夹下仅有pdf文件。程序核心for file in os.listdir(self
2022-02-22 19:14:43 213
原创 Linux下模拟实现简单的Shell
Linux下模拟实现简单的Shell完整代码:https://github.com/JiaZhengJingXianSheng/Linux_Shell一、 forkfork系统调用用于创建一个新进程,称为子进程,它与进程(称为系统调用fork的进程)同时运行,此进程称为父进程。创建新的子进程后,两个进程将执行fork()系统调用之后的下一条指令。子进程使用相同的程序计数器,相同的CPU寄存器,在父进程中使用的相同打开文件。特点1)在父进程中,fork返回新创建子进程的进程ID;2)在子进程中,f
2022-02-22 19:13:18 535
原创 Java多线程
Java多线程文章目录Java多线程线程创建一、继承Thread类实现简单下载器二、实现Runnable接口三、实现Callable接口小结线程不安全龟兔赛跑例子静态代理模式Lamda表达式函数式接口:简化总结线程创建继承Thread类实现Runnable接口实现Callable接口 (了解)一、继承Thread类自定义线程类继承Thread类重写run() 方法, 编写线程执行体创建线程对象, 调用start() 方法启动线程// 创建线程方式一: 继承Thread类,
2022-02-22 19:10:45 60
原创 Java简单工厂模式
Java简单工厂模式参考书目 《大话设计模式》 程杰 清华大学出版社代码链接 https://github.com/JiaZhengJingXianSheng/Calculator_By_Java我们在编写程序时为了容易修改,通常会用 封装、继承、多态 来降低程序的耦合度。比如我们要实现一个简单的计算器功能,具体功能为传入两个数值和一个操作符,返回计算结果。一、 抽象类创建通常我们会在一个抽象类内部定义主要的信息,比如输出输出等。public abstract class Operation
2022-02-22 19:09:22 277
原创 Java策略模式
Java策略模式参考书目 《大话设计模式》 程杰 清华大学出版社代码链接 https://github.com/JiaZhengJingXianSheng/Calculate_By_Java_Version2本文是对上篇 Java简单工厂模式 的重写,以达到代码更易于维护的目的。一、 定义接口与上篇不同,这篇我们选择定义接口,并在后续功能实现中, implementimplementimplement 我们的接口。接口定义加上参数,方便后期调用,定义如下public interface Ope
2022-02-22 19:07:34 327
原创 AutoEncoder
AutoEncoder自编码 AutoEncoder 是一种无监督学习的算法,他利用反向传播算法,让目标值等于输入值。比如对于一个神经网络,输入一张图片,通过一个 Encoder 神经网络,输出一个比较 "浓缩的"feature map。之后将这个 feature map 通过一个 Decoder 网络,结果又将这张图片恢复。如果说我们的数据集特别大,对于直接训练而言性能肯定较低。但如果我们对数据特征进行提取,缩减输入信息量,学习起来就相对轻松。简单模型下面是一个AutoEncoder的三层模型
2022-02-22 19:05:39 608
原创 C++常用排序
C++常用排序代码链接 https://github.com/JiaZhengJingXianSheng/SortByCPlusPlus选择排序选择排序可以将序列看作有序序列和无序序列的结合。如何理解这句话,我们拿第一个值当作标定,和后面所有值对比,找出小于标定的结果并进行交换。那么一轮交换就可以选出一个最小值,当我们标定不断后移就可实现排序。当然,标定应该在倒数第二个值终止,因为最后一个值并无后续。void selectSort(int* &arr, int len) { for
2022-02-22 18:51:51 138
原创 三维空间刚体运动
三维空间刚体运动参考书目 《视觉SLAM十四讲》 高翔 张涛 等著参考链接 https://zhuanlan.zhihu.com/p/32937868一、 旋转矩阵1. 点、向量和坐标系我们一般用三维空间中的点来表示我们的物体,向量来表示点在空间中的移动,简单定义在这边不再赘述。假定我们现在有向量 a和ba和ba和b 用 <a,b><a,b><a,b> 表示向量之间夹角,那么对外积而言我们定义 a与b的外积 = a^b ,外积的结果是一个向量,根据右手定则方向
2022-02-22 18:49:28 800
原创 朴素贝叶斯分类器
朴素贝叶斯分类器完整代码:https://github.com/JiaZhengJingXianSheng/Naive-Bayes-Classify基础贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。 而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特 征与其他特征都不相关。 朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习 的样本集中能获取得非常好的分类效果。条件概率假设A,B是两个随机变量,它们的联合概率 P(A=x,B=y) 是指
2022-02-22 18:46:54 1309
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人