最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [0]
输出:0
示例 4:
输入:nums = [-1]
输出:-1
贪心贪的是哪里呢?
如果 -2 1 在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。
这相当于是暴力解法中的不断调整最大子序和区间的起始位置。
区间的终止位置,其实就是如果count取到最大值了,及时记录下来了
#include<iostream>
#include<vector>
#include <algorithm>
using namespace std;
int MaxSubArray(vector<int>& nums) { //贪心
for(int i=1;i<nums.size();i++){
if (nums[i-1]>0) //若当前元素之前的和<0则丢弃当前元素之前的累加数列
nums[i]=nums[i-1]+nums[i];
}
return *std::max_element(nums.begin(),nums.end());
}
int main(){
vector<int> nums={-2,1,-3,4,-1,2,1,-5,4};
int a= maxSubArray(nums);
int b= MaxSubArray(nums);
printf("a=%d\nb=%d",a,b);
system("pause");
return 0;
}
动规五部曲如下:
确定dp数组(dp table)以及下标的含义
dp[i]:包括下标i之前的最大连续子序列和为dp[i]。
确定递推公式
dp[i]只有两个方向可以推出来:
dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);
dp数组如何初始化
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。
dp[0]应该是多少呢?
更具dp[i]的定义,很明显dp[0]因为为nums[0]即dp[0] = nums[0]。
确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。
举例推导dp数组
在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。
那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。
所以在递推公式的时候,可以直接选出最大的dp[i]。
int maxSubArray(vector<int>& nums) { //动态规划
int pre=0,Maxans=nums[0]; //pre为前一个数的最大连续子序列和,只不过当前的最大子序列和只与前一个数的最大连续子序列和有关,pre=dp[i-1]
for(int i=0;i<nums.size();i++){
pre=max(pre+nums[i],nums[i]); //与pre相加还不如自己本身大,那就把前边的都扔掉,从此自己本身重新开始累加
Maxans=max(Maxans,pre); //循环时不断更新选择当前位置的最大子序列和和曾记录的最大子序列和中较大值
}
return Maxans;
}