【2021最新版】数据结构+算法面试题总结(9+20道题含答案解析)

这篇博客整理了数据结构和算法面试中的关键知识点,包括栈、队列、链表、散列表、排序二叉树、前缀树、红黑树、B-TREE和位图的解释,以及19道算法题目如随机打乱数组、2的幂判断、日期计算、物品交换等的代码实现。还提到了AES、RSA、CRC和MD5等加密算法。
摘要由CSDN通过智能技术生成

最近面试的小伙伴很多,对此我整理了一份Java面试题手册:基础知识、JavaOOP、Java集合/泛型面试题、Java异常面试题、Java中的IO与NIO面试题、Java反射、Java序列化、Java注解、多线程&并发、JVM、Mysql、Redis、Memcached、MongoDB、Spring、SpringBoot、SpringCloud、RabbitMQ、Dubbo、MyBatis、ZooKeeper、数据结构、算法、Elasticsearch、Kafka、微服务、Linux等等。可以分享给大家学习。【持续更新中】

完整版Java面试题地址:【2021最新版】Java面试真题汇总

序号 内容 地址链接
1 【2021最新版】JavaOOP面试题总结 https://blog.csdn.net/m0_48795607/article/details/115288673
2 【2021最新版】Java基础面试题总结 https://blog.csdn.net/m0_48795607/article/details/115485109
3 【2021最新版】多线程&并发面试题总结 https://blog.csdn.net/m0_48795607/article/details/115489616
4 【2021最新版】JVM面试题总结 https://blog.csdn.net/m0_48795607/article/details/115555086
5 【2021最新版】Mysql面试题总结 https://blog.csdn.net/m0_48795607/article/details/115561030
6 【2021最新版】Redis面试题总结 https://blog.csdn.net/m0_48795607/article/details/115642129
7 【2021最新版】Memcached面试题总结 https://blog.csdn.net/m0_48795607/article/details/115664662
8 【2021最新版】MongoDB面试题总结 https://blog.csdn.net/m0_48795607/article/details/115672336
9 【2021最新版】Spring面试题总结 https://blog.csdn.net/m0_48795607/article/details/115738909
10 【2021最新版】Spring Boot面试题总结 https://blog.csdn.net/m0_48795607/article/details/115771307
11 【2021最新版】Spring Cloud面试题总结 https://blog.csdn.net/m0_48795607/article/details/115917190
12 【2021最新版】RabbitMQ面试题总结 https://blog.csdn.net/m0_48795607/article/details/116064045
13 【2021最新版】Dubbo面试题总结 https://blog.csdn.net/m0_48795607/article/details/116237861
14 【2021最新版】MyBatis面试题总结 https://blog.csdn.net/m0_48795607/article/details/116427170
15 【2021最新版】ZooKeeper面试题总结 https://blog.csdn.net/m0_48795607/article/details/116458096
16 【2021最新版】数据结构面试题总结 https://blog.csdn.net/m0_48795607/article/details/116461620
17 【2021最新版】算法面试题总结 https://blog.csdn.net/m0_48795607/article/details/116461620
18 【2021最新版】Elasticsearch面试题总结 https://blog.csdn.net/m0_48795607/article/details/116656094
19 【2021最新版】Kafka面试题总结 https://blog.csdn.net/m0_48795607/article/details/116659584
20 【2021最新版】微服务面试题总结 https://blog.csdn.net/m0_48795607/article/details/116662109
21 【2021最新版】Linux面试题总结 https://blog.csdn.net/m0_48795607/article/details/116798880

1、栈(stack)

答:

栈( stack)是限制插入和删除只能在一个位置上进行的表,该位置是表的末端,叫做栈顶(top)。它是后进先出(LIFO)的。对栈的基本操作只有 push(进栈)和 pop(出栈)两种,前者相当于插入,后者相当于删除最后的元素。

2、队列(queue)

答:

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。
在这里插入图片描述

3、链表(Link)

答:

链表是一种数据结构,和数组同级。比如, Java中我们使用的ArrayList,其实现原理是数组。而LinkedList的实现原理就是链表了。链表在进行循环遍历时效率不高,但是插入和删除时优势明显。

4、散列表(Hash Table)

答:

散列表(Hash table,也叫哈希表)是一种查找算法,与链表、树等算法不同的是,散列表算法在查找时不需要进行一系列和关键字(关键字是数据元素中某个数据项的值,用以标识一个数据元素)的比较操作。

散列表算法希望能尽量做到不经过任何比较,通过一次存取就能得到所查找的数据元素,因而必须要在数据元素的存储位置和它的关键字(可用key表示)之间建立一个确定的对应关系,使每个关键字和散列表中一个唯一的存储位置相对应。因此在查找时,只要根据这个对应关系找到给定关键字在散列表中的位置即可。这种对应关系被称为散列函数(可用h(key)表示)。

用的构造散列函数的方法有:

1) 直接定址法: 取关键字或关键字的某个线性函数值为散列地址。

即: h(key) = key或h(key) = a * key + b, 其中a和b为常数。

(2) 数字分析法

(3) 平方取值法:取关键字平方后的中间几位为散列地址。

(4) 折叠法:将关键字分割成位数相同的几部分,然后取这几部分的叠加和作为散列地址。

(5) 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址,

即: h(key) = key MOD p p ≤ m

(6) 随机数法:选择一个随机函数,取关键字的随机函数值为它的散列地址,

即: h(key) = random(key)

5、排序二叉树

答:

首先如果普通二叉树每个节点满足:左子树所有节点值小于它的根节点值,且右子树所有节点值大于它的根节点值,则这样的二叉树就是排序二叉树。

插入操作

首先要从根节点开始往下找到自己要插入的位置(即新节点的父节点);具体流程是:新节点与当前节点比较,如果相同则表示已经存在且不能再重复插入;如果小于当前节点,则到左子树中 寻找,如果左子树为空则当前节点为要找的父节点,新节点插入到当前节点的左子树即可;如果大于当前节点,则到右子树中寻找,如果右子树为空则当前节点为要找的父节点,新节点插入到当前节点的右子树即可。

删除操作

删除操作主要分为三种情况, 即要删除的节点无子节点,要删除的节点只有一个子节点,要删除的节点有两个子节点。

5、排序二叉树

  1. 对于要删除的节点无子节点可以直接删除,即让其父节点将该子节点置空即可。

  2. 对于要删除的节点只有一个子节点,则替换要删除的节点为其子节点。

  3. 对于要删除的节点有两个子节点, 则首先找该节点的替换节点(即右子树中最小的节点),接着替换要删除的节点为替换节点,然后删除替换节点。

    查询操作

查找操作的主要流程为:先和根节点比较,如果相同就返回, 如果小于根节点则到左子树中归查找,如果大于根节点则到右子树中递归查找。因此在排序二叉树中可以很容易获取最大(最右最深子节点)和最小(最左最深子节点)值

6、 前缀树

答:

前缀树(Prefix Trees 或者 Trie)与树类似,用于处理字符串相关的问题时非常高效。它可以实现快速检索,常用于字典中的单词查询,搜索引擎的自动补全甚至 IP 路由。

下图展示了“top”, “thus”和“their”三个单词在前缀树中如何存储的:

7、红黑树

答:

红黑树的特性

(1)每个节点或者是黑色,或者是红色。

(2)根节点是黑色。

(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL 或NULL)的叶子节点!

(4)如果一个节点是红色的,则它的子节点必须是黑色的。

(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

左旋

对 x 进行左旋,意味着,将“x 的右孩子”设为“x 的父亲节点”;即,将 x 变成了一个左节点(x成了为 z 的左孩子)!。 因此,左旋中的“左”,意味着“被旋转的节点将变成一个左节点”。

LEFT-ROTATE(T, x) y ← right[x] // 前提:这里假设 x 的右孩子为 y。下面开始正式操作 right[x] ← left[y] // 将 “y 的左孩子” 设为 “x 的右孩子”,即 将β设为 x 的右孩子 p[left[y]] ← x // 将 “x” 设为 “y 的左孩子的父亲”,即 将β的父亲设为 x
p[y] ← p[x] // 将 “x 的父亲” 设为 “y 的父亲” if p[x] = nil[T] then root[T] ← y // 情况 1:如果 “x 的父亲” 是空节点,则将 y 设为根节点 else if x = left[p[x]] then left[p[x]] ← y // 情况 2:如果 x 是它父节点的左孩子,则将 y 设为“x 的父节点 的左孩子” else right[p[x]] ← y // 情况 3: (x 是它父节点的右孩子) 将 y 设为“x 的父节点的右孩 子” left[y] ←
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值