五子棋的获胜点

本文探讨了如何解决在五子棋游戏中寻找获胜点的问题。通过递归算法,结合线性代数,分析了从特定点出发,如何判断是否能形成五子连线。详细介绍了解题思路,递归变型,落子生根的策略,以及实现细节,包括方向处理、落点判断和优化剪枝。最后提到了代码实现的扩展性,对于多颗棋子的情况,可以使用数组保存落点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近笔试遇到了这样一道题
有一个n*n大小的棋盘,棋盘上有一些棋子,这些棋子没有连成5个的。现在你手中有一枚棋子,请你找出所有落子后能连成五个的点。

1.解题思路

这种题乍一看应该会想到算法题中的岛屿数量这道题,并一股脑的用广度优先搜索,那这就给自己挖坑了。五子棋是直线或者斜线连5个才算赢,广度优先会导致搜索出来的棋子奇形怪状。首先我们确定解题的大方向是用递归,但是在细节上还要考量一下。

2.递归变型

首先我们想象自己是电脑,如果给你一个点,你怎么判断这个点出发是否能连成5个呢?我是这样想的“从这个点向上下左右和斜着的上下左右去找,如果某一条线能连成5个那这个点就是五子中的一子”。有了这个想法,递归的大致模样也就出来了。但是这样的递归算深度优先还是广度优先呢?说深度可以,因为他从点出发,沿着某个方向一直找,直到不能满足连成5个。说广度也可以,因为他将点的所有方向放入了递归,这也可以看做是广度优先。其实非要定义他是广度还是深度没有太大意义,算法就是一个架子嘛,你去对应的场景中合理的利用他就好了,管他是什么名词呢。我们就暂且理解为深度和广度的结合,或者是方向锁定的广度优先。

3.落子生根

递归中难免会出现中间断掉的点,解决递归中这些不连续的点,所以要“落子”,还要判断手中的棋子最终的落点,所以要“生根”。当手中有棋子时,遇到空点就下,若果最终能连成五个,那落子点就会要生根,代表这个点落子后一定会出现5子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值