洛谷P3368 (线段树学习2)

使用C++实现的线段树数据结构及其应用
这篇博客详细介绍了如何用C++构建线段树数据结构,并展示了其在单点查询和区间修改操作上的应用。代码包括了建树、单点查询、单点修改、区间查询和区间修改等关键函数,适用于高效处理动态区间求和问题。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long ll;
const int maxn = 3e6 + 10;//注意根节点的大小范围 
#define in(a) a = read()
#define REP(i,k,n) for(long long i = k; i <= n; i++)
ll a[500010];
 
inline long long read()
{
    long long x=0, f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-1;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
    return x*f;
}

struct node{
    ll i, l, r, sum, lz; 
}tree[maxn];

//建树 
inline void build(ll i, ll l, ll r)
{
    tree[i].l = l, tree[i].r = r;
    if(l == r)
    {
        tree[i].sum = a[l];
        return ;
    }
    int mid = (l + r) >> 1;        
    build(i<<1, l, mid);
    build(i<<1|1, mid + 1, r);
    tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;
    return ;
}

inline void push_down(ll i)
{
    if(tree[i].lz != 0)
    {
        tree[i<<1].lz += tree[i].lz;//将父亲的lz赋给左右儿子 
        tree[i<<1|1].lz += tree[i].lz;
        ll mid = (tree[i].l + tree[i].r ) / 2;
        tree[i<<1].sum += tree[i].lz * (mid - tree[i<<1].l + 1);
        tree[i<<1|1].sum += tree[i].lz * (tree[i<<1|1].r - mid);
        tree[i].lz = 0; 
    }
    return ;
}

//单点查询 
inline ll search_1(ll i, ll dis)
{
    if(tree[i].l == dis && tree[i].r == dis)
    {
        return tree[i].sum;
    }
    push_down(i);
    ll mid = (tree[i].l + tree[i].r ) / 2;
    if(dis <= mid)
        search_1(i<<1, dis);
    else
        search_1(i<<1|1, dis);
} 

//单点修改 
inline void add_1(ll i, ll dis, ll k)
{
    if(tree[i].l == tree[i].r )
    {
        tree[i].sum += k;
        return ;
    }
    if(dis <= tree[i<<1].r )
        add_1(i<<1, dis, k);
    else    add_1(i<<1|1, dis, k);
    tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;//更新走过的所有sum值 
    return ;
}

//区间查询(sum) 
inline ll search(ll i, ll l, ll r)
{
    if(tree[i].l >= l && tree[i].r <= r)
    {
        return tree[i].sum;
    }
    if(tree[i].l > r || tree[i].r < l)
        return 0;
    int s = 0;
    if(tree[i<<1].r >= l)
        s += search(i<<1, l, r);
    if(tree[i<<1|1].l <= r)
        s += search(i<<1|1, l, r);
    return s;
}

//区间修改
inline void add(ll i, ll l, ll r, ll k)
{
    if(tree[i].l >= l && tree[i].r <= r)
    {
        tree[i].sum += k * (tree[i].r - tree[i].l + 1);
        tree[i].lz += k;
        return ;
    }
    push_down(i);
    ll mid = (tree[i].l + tree[i].r ) / 2;
    if(l <= mid)
        add(i<<1, l, r, k);
    if(r > mid)
        add(i<<1|1, l, r, k);
    tree[i].sum = tree[i<<1].sum + tree[i<<1|1].sum;//更新 
}

int main()
{
    ll n, m, c, l, r, dis, k;
    in(n);   in(m);
    REP(i, 1, n)   in(a[i]);
    build(1, 1, n);//建树
    
    REP(j, 1, m)
    {
        in(c);
        if(c == 1)
        {
            in(l);
            in(r);
            in(k);
            add(1, l, r, k);
        }
        if(c == 2)
        {
            in(dis);
            printf("%lld\n", search_1(1,dis));
        }
    }
        
    return 0;
}
<think>根据用户需求,用户希望寻找平台上适合练习的线段树相关经典练习题。结合引用内容,我们可以提取出一些经典的线段树题目。 引用[1]提到了P2824(排序),该题可以通过线段树分裂合并+set或者二分答案+线段树来解决,是一道经典题目。 引用[2]中提到了P1502(窗口的星星),是一道经典的扫描线问题(通常用线段树实现)。 引用[3]提到了一道分块练习题(但用户要求线段树),所以我们可以忽略分块,但其中提到线段树与树状数组过不了,说明该题可能设计为分块,所以不推荐。 引用[4]中提到了hdu1542(Atlantis,扫描线法)以及一道线段树练习题(未给出题号,但代码是线段树实现的海报张贴问题,类似于P5490【模板】扫描线)。 此外,根据常见的线段树经典题,我们还可以补充一些: 1. P3372 【模板】线段树1 - 区间修改(加法)、区间查询(求和) 2. P3373 【模板】线段树2 - 区间修改(加法、乘法)、区间查询(求和) 3. P5490 【模板】扫描线 - 矩形面积并(Atlantis问题) 4. P2572 [SCOI2010]序列操作 - 多种区间操作(赋值、取反、求和、求连续1的个数) 5. P1471 方差 - 维护区间和与区间平方和 6. P1531 I Hate It - 区间最值、单点修改(较简单) 结合引用中提到的题目,我们重点推荐: 1. P2824 [HEOI2016/TJOI2016]排序(引用[1]) 题目大意:给出一个1到n的全排列,现在进行m次局部排序,排序分为两种:(1)将区间[l,r]升序排序;(2)将区间[l,r]降序排序。最后询问第q位置上的数。 解题方法:二分答案+线段树线段树分裂合并(较难)。该题是线段树应用的经典题目,可以锻炼对线段树的灵活运用。 2. P1502 窗口的星星(引用[2]) 题目大意:平面上有n颗星星,每颗星星有一个亮度。用一个宽为W、高为H的矩形去框星星,求矩形能框住的星星的亮度之和的最大值(边框上的星星不算)。 解题方法:扫描线+线段树。该题是经典的扫描线问题,需要将问题转化为区间操作,并用线段树维护最大值。 3. P5490 【模板】扫描线(引用[4]中hdu1542的同类型题,在上为P5490) 题目大意:求n个矩形的面积并。 解题方法:扫描线+线段树。这是扫描线最基础的应用,适合学习扫描线算法。 4. P2572 [SCOI2010]序列操作 题目大意:对一个01序列进行5种操作:区间置0、区间置1、区间取反、区间求和、区间求连续1的个数。 解题方法:线段树维护多个标记(覆盖标记、取反标记)和复杂信息(连续段)。这题对线段树的能力提升很大。 5. P3373 【模板】线段树2 题目大意:区间乘、区间加、区间求和。线段树处理两种区间修改的模板题。 6. P1471 方差 题目大意:维护一个数列,支持区间加,以及求区间平均值和区间方差。 解题方法:线段树维护区间和与区间平方和。通过数学推导,方差可以由平方和与和推导出来。 7. P1531 I Hate It 题目大意:单点修改,区间查询最大值(RMQ问题)。 解题方法:线段树维护区间最大值。适合入门。 以上题目难度由浅入深,涵盖了线段树的基本操作、延迟标记、扫描线、复杂信息维护等。 相关问题: 1. 线段树在处理区间问题时有哪些优势? 2. 线段树在处理区间修改时,延迟标记(lazy tag)是如何工作的? 3. 扫描线算法通常用于解决哪些问题? 4. 如何用线段树维护区间历史最值? 5. 线段树和树状数组在应用上有何异同?</think>### 线段树经典练习题推荐(平台) 以下是结合经典题型和引用内容的推荐题目列表,难度由浅入深,覆盖线段树的核心应用场景: --- #### **1. 基础模板题** - **P3372 【模板】线段树1** - **内容**:区间加法、区间求和 - **推荐理由**:线段树最基础的模板题,适合入门[^2]。 - **P3373 【模板】线段树2** - **内容**:区间加法+乘法混合操作 - **关键点**:需处理多种标记的优先级(先乘后加)[^4]。 --- #### **2. 扫描线应用(面积/覆盖问题)** - **P5490 【模板】扫描线** - **内容**:求 $n$ 个矩形的面积并 - **方法**:扫描线+线段树维护区间覆盖长度[^4]。 - **P1502 窗口的星星** - **内容**:用固定窗口框住星星的最大亮度 - **技巧**:将点转化为矩形,扫描线求最大重叠值[^2]。 --- #### **3. 二分答案+线段树** - **P2824 [HEOI2016/TJOI2016]排序** - **内容**:对序列的局部区间升序/降序排序,最后查询单点值 - **解法**: 1. 二分答案 $x$,将序列转化为 $01$ 序列($≥x$ 为 $1$,否则为 $0$) 2.线段树模拟区间排序(统计 $1$ 的数量并区间赋值)[^1]。 --- #### **4. 动态开点与权值线段树** - **P3960 列队(NOIP2017)** - **内容**:矩阵中多次删除元素并添加到队尾 - **优化**:动态开点线段树维护区间删除和查询位置。 --- #### **5. 复杂标记与信息维护** - **P2572 [SCOI2010]序列操作** - **内容**:区间赋值、取反、求和、求连续 $1$ 的最大长度 - **难点**:设计标记传递规则,维护多维度信息(需记录左右端点状态)[^4]。 - **P1471 方差** - **内容**:维护区间方差 $s^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$ - **技巧**:转化为维护区间和 $\sum x_i$ 与区间平方和 $\sum x_i^2$[^2]。 --- #### **6. 空间优化与分块对比** - **分块练习题(如引用[3])** - **场景**:当空间限制严格时(如 $4\text{MB}$),分块可能优于线段树 - **思考点**:对比线段树与分块在时间/空间上的取舍[^3]。 --- ### 练习建议 1. **先掌握模板**:完成 `P3372` 和 `P3373`,理解延迟标记(lazy tag)的实现。 2. **再攻应用场景**:尝试扫描线(`P5490`)和二分答案(`P2824`)。 3. **最后挑战综合题**:如 `P2572` 需同时处理多种操作,适合检验综合能力。 > 提示:所有题目均可在在线评测系统提交,部分题目在引用[1]的OJ中已收录题解。 --- ###
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值