线段树模板题
嘿嘿!可以用树状数组!为了练一练线段树!哎!就是玩!
题目描述
如题,已知一个数列,你需要进行下面两种操作:
将某区间每一个数数加上 xx;
求出某一个数的值。
输入格式
第一行包含两个整数 NN、MM,分别表示该数列数字的个数和操作的总个数。
第二行包含 NN 个用空格分隔的整数,其中第 ii 个数字表示数列第 ii 项的初始值。
接下来 MM 行每行包含 22 或 44个整数,表示一个操作,具体如下:
操作 11: 格式:1 x y k 含义:将区间 [x,y][x,y] 内每个数加上 kk;
操作 22: 格式:2 x 含义:输出第 xx 个数的值。
输出格式
输出包含若干行整数,即为所有操作 22 的结果。
输入输出样例
输入
5 5
1 5 4 2 3
1 2 4 2
2 3
1 1 5 -1
1 3 5 7
2 4
输出
6
10
首先确定存储类型
struct node{
int l;//左端点
int r;//右端点
int sum;//区间求和
int tag;//懒人标记
}tree[Maxn*4];//需要四倍空间
//为什么需要四倍空间!可以自行搜索证明过程.....
第二部建树
void BuildTree(int l,int r,int u)
{
tree[u].l = l;
tree[u].r = r;
tree[u].tag = 0;//tag进行lazy
if(l==r)
{
tree[u].sum = a[l];
return ;
}
int mid = (l + r) / 2;
BuildTree(l,mid,u<<1);//左孩子
BuildTree(mid+1,r,u<<1|1);//右孩子
tree[u].sum = tree[u<<1].sum + tree[u<<1|1].sum;//返回时更新当前值
}
第三部分区间修改
void update(int l,int r,int k,int u)
{
if(l==tree[u].l&&r==tree[u].r)//当更新区间为这一区间段时,进行标记
{
tree[u].tag += k;
return ;
}
tree[u].sum += (r-l+1)*k; //不为这区间段时候,直到到达那一区间段
//以上的所有结点sum都进行更新
int mid = (tree[u].l + tree[u].r) / 2;
if(mid>=r) //当这一区间段的中点值比更新的右节点还要大时,
update(l,r,k,u<<1);//更新区间一定在左边,更新左孩子
else if(mid<l) //同理更新右孩子
update(l,r,k,u<<1|1);
else
{ //否则,更新区间包括了左孩子区间段和右孩子区间段
update(l,mid,k,u<<1);//依次进行更新
update(mid+1,r,k,u<<1|1);
}
}
第四部分区间查询
int Query(int l,int r,int x,int u)
{ //区间查询(l,r): if(tree[u].l==l&&tree[u].r==r)
if(tree[u].l==tree[u].r) //好的吧!这题为单点查询,所以直接搜到叶子节点..QAQ!
return tree[u].sum + (r-l+1)*tree[u].tag;//不要忘了标记的值
if(tree[u].tag != 0)
pushdown(u); //向下更新sum, 把当前区间段标记的tag往下传
//注意:只有更新和查询操作时候:必要时把tag往下传
int mid = (l + r) / 2;
if(mid>=x) //单点!其实传的l,r没有用!因为tree[u].l == l,tree[u]r == r
return Query(l,mid,x,u<<1);
else if(x>mid)
return Query(mid+1,r,x,u<<1|1);
//区间查询同理跟修改那块代码一样...记得查询需要返回值
}
全部代码(AC)
#include"iostream"
using namespace std;
const int Maxn = 5e5 + 24;
struct node{
int l;
int r;
int sum;
int tag;
}tree[Maxn*4];
int a[Maxn];
void BuildTree(int l,int r,int u)
{
tree[u].l = l;
tree[u].r = r;
tree[u].tag = 0;
if(l==r)
{
tree[u].sum = a[l];
return ;
}
int mid = (l + r) / 2;
BuildTree(l,mid,u<<1);
BuildTree(mid+1,r,u<<1|1);
tree[u].sum = tree[u<<1].sum + tree[u<<1|1].sum;
}
void pushdown(int u)
{
tree[u<<1].tag += tree[u].tag;
tree[u<<1|1].tag += tree[u].tag;
tree[u].sum += (tree[u].r-tree[u].l+1)*tree[u].tag;
tree[u].tag = 0;
}
void update(int l,int r,int k,int u)
{
if(l==tree[u].l&&r==tree[u].r)
{
tree[u].tag += k;
return ;
}
tree[u].sum += (r-l+1)*k;
int mid = (tree[u].l + tree[u].r) / 2;
if(mid>=r)
update(l,r,k,u<<1);
else if(mid<l)
update(l,r,k,u<<1|1);
else
{
update(l,mid,k,u<<1);
update(mid+1,r,k,u<<1|1);
}
}
int Query(int l,int r,int x,int u)
{
if(tree[u].l==tree[u].r)
return tree[u].sum + (r-l+1)*tree[u].tag;
if(tree[u].tag != 0)
pushdown(u);
int mid = (l + r) / 2;
if(mid>=x)
return Query(l,mid,x,u<<1);
else if(x>mid)
return Query(mid+1,r,x,u<<1|1);
}
int main()
{
int n,m;
int v1,v2,v3;
int num;
cin>>n>>m;
for(int i = 1;i<=n;i++)
cin>>a[i];
BuildTree(1,n,1);
for(int i = 0;i<m;i++)
{
cin>>num;
if(num==1)
{
cin>>v1>>v2>>v3;
update(v1,v2,v3,1);
}
else
{
cin>>v1;
cout<<Query(1,n,v1,1)<<endl;
}
}
}