写Python代码经常会遇到Windows平台安装第三方包经常失败的问题和虚拟环境切换的问题,这两个问题最让人头痛,然而这两个问题Anoconda可以拯救。
Anaconda 是什么?
Anaconda 是一个可用于科学计算的 Python 发行版,支持 Linux、Mac、Windows系统,内置了常用的科学计算包。它解决了官方 Python 的两大痛点。
一句话总结就是它是一个比Python官方更牛逼的安装包
- 第一:提供了包管理功能,Windows 平台安装第三方包经常失败的场景得以解决,
- 第二:提供环境管理的功能,功能类似 Virtualenv,解决了多版本Python并存、切换的问题。
下载 Anaconda
直接在官网下载安装包, 选择 Python3.8 的安装包进行下载,下载完成后直接安装,安装过程选择默认配置即可,大约需要1.8G的磁盘空间。
conda 是 Anaconda 下用于包管理和环境管理的工具,功能上类似 pip 和 vitualenv 的组合。安装成功后 conda 会默认加入到环境变量中,因此可直接在命令行窗口运行命令 conda
conda 的环境管理与 virtualenv 是基本上是类似的操作。因此只要你用过pip 或者 virtualenv 那么基本没有迁移成本。
环境管理
创建虚拟环境
基于python3.8创建一个名字为python36的环境
conda create --name python36 python=3.8
激活虚拟环境
activate python36 # windows 平台 source activate python36 # linux/mac 平台
退出当前虚拟环境
deactivate python36
删除虚拟环境
conda remove -n python36 --all # 或者 conda env remove -n python36
查看所有已安装的虚拟环境
conda info -e python36 * D:\Programs\Anaconda3\envs\python36 root D:\Programs\Anaconda3
包管理
conda 的包管理功能可 pip 是一样的,当然你选择 pip 来安装包也是没问题的。
# 安装 matplotlib conda install matplotlib # 查看已安装的包 conda list # 包更新 conda update matplotlib # 删除包 conda remove matplotlib
用 conda 你再也不需要担心无法安装 mysqlclient、matplotlib 等机器学习相关的包了。
在 conda 中 anything is a package 。conda 本身可以看作是一个包,python 环境可以看作是一个包,anaconda 也可以看作是一个包,因此除了普通的第三方包支持更新之外,这3个包也支持。比如:
# 更新conda本身 conda update conda # 更新anaconda 应用 conda update anaconda # 更新python,假设当前python环境是3.6.1,而最新版本是3.6.2,那么就会升级到3.6.2 conda update python
修改镜像地址
和pip一样,Anaconda 的镜像地址默认在国外,用 conda 安装包的时候会很慢,目前可用的国内镜像源地址有清华大学的。修改 ~/.condarc (Linux/Mac) 或 C:\Users\当前用户名\.condarc (Windows) 配置:
channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - defaults show_channel_urls: true
如果使用conda安装包的时候还是很慢,那么可以考虑使用pip来安装,同样把 pip 的镜像源地址也改成国内的,豆瓣源速度比较快。修改 ~/.pip/pip.conf (Linux/Mac) 或 C:\Users\当前用户名\pip\pip.ini (Windows) 配置:
[global] trusted-host = pypi.douban.com index-url = http://pypi.douban.com/simple
配置完后,你的下载速度一定会飞起。
如果你是玩数据分析的话,强烈推荐你使用它来管理包和虚拟环境, 如果再配合 jupyter notebook 来开发的话,犹如倚天和屠龙。
推荐: 太强了!基于公众号用 Python 开发一个抽奖程序 2020年最漂亮的Linux发行版 19 个接私活平台,你有技术就有钱