Acwing_1148秘密的牛奶运输【最小生成树应用: 次小生成树】

题目描述:

农夫约翰要把他的牛奶运输到各个销售点。

运输过程中,可以先把牛奶运输到一些销售点,再由这些销售点分别运输到其他销售点。

运输的总距离越小,运输的成本也就越低。

低成本的运输是农夫约翰所希望的。

不过,他并不想让他的竞争对手知道他具体的运输方案,所以他希望采用费用第二小的运输方案而不是最小的。

现在请你帮忙找到该运输方案。

注意:

  • 如果两个方案至少有一条边不同,则我们认为是不同方案;
  • 费用第二小的方案在数值上一定要严格小于费用最小的方案;
  • 答案保证一定有解;

输入格式:

第一行是两个整数 N,M,表示销售点数和交通线路数;

接下来 M 行每行 3 个整数 x,y,z,表示销售点 x 和销售点 y 之间存在线路,长度为 z。

输出格式:

输出费用第二小的运输方案的运输总距离。

数据范围:

1≤N≤500,
1≤M≤10^4,
1≤z≤10^9,
数据中可能包含重边。

输入样例:

4 4
1 2 100
2 4 200
2 3 250
3 4 100

输出样例:

450

思路分析:

  • 本题要求严格的次小生成树。我们只需要将最小生成树中某一条边替换为另一条较大的边即可,可以尝试加上每一条非树边,然后去掉多余的边,最后在所有方案中求权值最小的那个就是答案了。

代码中有求次小生成树的具体方案
AC代码:

//次小生成树
//方法一:先求最小生成树,再枚举最小生成树中的边求解,
//方法二:先求最小生成树,然后依次枚举非树边,然后将该边加入树中,同时从树中去掉一条边,使得最终的图仍是一颗树
//则一定可以求出次小生成树
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;

typedef long long LL;
const int N = 505, M = 10010;
int n, m;
struct Edge {
	int a, b, w;
	bool f;;//判断是否为树边
	bool operator<(const Edge&t) {
		return w < t.w;
	}
}edge[M];

int p[N];
int dist[N][N];
int h[N], e[N * 2], w[N * 2], ne[N * 2], idx;

void add(int a, int b, int c) {
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int find(int x) {
	if (p[x] != x) p[x] = find(p[x]);
	return p[x];
}

void dfs(int u, int fa, int maxd, int d[]) {
	d[u] = maxd;
	for (int i = h[u]; i != -1; i = ne[i]) {
		int j = e[i];
		if (j != fa) {
			dfs(j, u, max(maxd, w[i]), d);
		}
	}
}

int main()
{
	scanf("%d%d", &n, &m);
	memset(h, -1, sizeof h);
	for (int i = 0; i < m; i++) {
		int a, b, w;
		scanf("%d%d%d", &a, &b, &w);
		edge[i] = { a,b,w };
	}

	sort(edge, edge + m);

	for (int i = 1; i <= n; i++) p[i] = i;

	LL sum = 0;
	for (int i = 0; i < m; i++) {
		int pa = find(edge[i].a), pb = find(edge[i].b), w = edge[i].w;
		if (pa != pb) {
			sum += w;//最小生成树权值总和
			p[pa] = pb;
			edge[i].f = true;
			add(edge[i].a, edge[i].b, w), add(edge[i].b, edge[i].a, w);
		}
	}
	//暴力枚举以每个点为根节点,到其他所有点的边权最大值
	for (int i = 1; i <= n; i++) dfs(i, -1, 0, dist[i]);

	LL res = 1e18;
	for (int i = 0; i < m; i++) {
		if (!edge[i].f) {//非树边
			int a = edge[i].a, b = edge[i].b, w = edge[i].w;
			if (w > dist[a][b])
				res = min(res, sum + w - dist[a][b]);
		}
	}
	printf("%lld", res);

	system("pause");
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最小生成算法是图论中的一个重要问题,它的应用非常广泛,包括网络设计、道路规划、电力系统设计等领域。在本文中,我们将介绍最小生成问题的基本概念、两种常用算法以及在实际应用中的具体应用。 一、最小生成问题的概念 最小生成问题是在一个加权无向连通图中找到一个生成,使得上所有边的权重之和最小。一般来说,最小生成问题可以通过贪心算法来解决。 二、两种常用算法 1. Prim算法 Prim算法是一种贪心算法,它从任意一个点开始,每次选择与当前集合连通且权值最小的边,将该边连接的点加入到集合中,直到所有点都被连接。Prim算法的时间复杂度为 O(n^2) 或 O(nlogn),取决于采用哪种数据结构。 2. Kruskal算法 Kruskal算法也是一种贪心算法,它先将所有边按权值从小到大排序,然后依次加入生成中,直到加入 n-1 条边为止。如果加入的边会形成环,则将其舍弃。Kruskal算法的时间复杂度为 O(mlogm),其中 m 为边的数量。 三、最小生成问题的应用 1. 网络设计 在网络设计中,最小生成算法可以用于构建网络拓扑结构,以达到最小化网络成本的效果。例如,在企业内部建设网络时,可以使用最小生成算法来设计网络拓扑结构,以最小化网络设备和线缆的成本。 2. 道路规划 在道路规划中,最小生成算法可以用于确定最短路径。例如,在城市交通规划中,可以使用最小生成算法来规划城市交通路线,以最小化建设成本和缓解交通拥堵。 3. 电力系统设计 在电力系统设计中,最小生成算法可以用于优化电网的结构和拓扑。例如,在电力系统的无功补偿控制中,可以使用最小生成算法来确定最小的电容器安装位置,以最小化电网损耗和提高电网质量。 四、结论 最小生成算法是图论中的一个重要问题,广泛应用于实际生活中的各个领域。Prim算法和Kruskal算法是最小生成算法中常用的两种算法,各有其优缺点。在具体应用时,应根据场景需求选择合适的算法,以达到最佳效果。最小生成算法的研究和应用,将会为现代社会的信息化建设和可持续发展做出更大的贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值