2021-06-23

本文详细介绍了TensorFlow库中的`sparse_softmax_cross_entropy_with_logits`函数,该函数用于计算稀疏标签的softmax交叉熵损失。文章通过实例解析了其使用方法和背后的数学原理,帮助读者更好地理解和应用此函数于实际的深度学习模型中。
摘要由CSDN通过智能技术生成

tf.nn.sparse_softmax_cross_entropy_with_logits()

https://blog.csdn.net/ZJRN1027/article/details/80199248

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值