一、归并排序的介绍
基本介绍
归并排序(MERGE- SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案修补”在一起,即分而治之)。
基本思想
1.把数组从中间划分成两个子数组
;
2.一直递归
地把子数组划分成更小的子数组
,直到子数组里面只有一个元素
3.依次按照递归的返回顺序,不断地合并排好序的子数组
,直到最后把整个数组的顺序排好。
看看治
阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现的详细步骤:
二、代码实现思想
按图所示实现分解方法
//int arr[]={8,4,5,7,1,3,6,2};
//int temp[]=new int[arr.length];
//分解方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
//0 - mid 即是0 - 3 {8,4,5,7}
mergeSort(arr, left, mid, temp);
//向右递归进行分解
//mid+1 - midright 即是4 - 7 {1,3,6,2}
mergeSort(arr, mid + 1, right, temp);
}
}
按图所示实现合并方法
//合并的方法
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
//初始化i,左边有序序列的初始索引
int i = left;
//初始化j,右边有序序列的初始索引
//为什么要mid+1?
//因为假设数组arr{1,3,5,6,2,4} mid=(left+right)/2 = 2
//此时左边i=left mid左边的就是 0 - mid 即是{1,3,5}
//此时右边就是mid+1 - right 即是{6,2,4}
int j = mid+1;
int t = 0;//指向temp数组的当前索引
//(一)
//先把左右两边(有序)的数据按照规则填充到temp数组
//直到左右两边的有序序列,有一边处理完毕为止
//i <= mid 代表左边有序序列有值
//j <= right 代表右边有序序列有值
while (i <= mid && j <= right) {//继续
//如果左边的有序序列的当前元素,小于等于右边有序序列的当前元素
//即将左边的当前元素,拷贝到temp数组
//假设数组arr{1,3,5,6,2,4}
//左边 0 - mid 即是{1,3,5}
//右边 mid+1 -right 即是{6,2,4}
//若arr[i]<= arr[j] 即是1 <= 6
if (arr[i] <= arr[j]) {
temp[t] = arr[i];//temp[0]=arr[i];
t += 1;//指向temp数组下一位
i += 1;//指向左边下一位arr[i+1]...
}else{
//反之arr[i] >= arr[j] 左边大于右边
//则进行右边赋值给temp数组
temp[t] = arr[j];//temp[0]=arr[i];
t += 1;//指向temp数组下一位
j += 1;//指向右边边下一位arr[j+1]...
}
}
//(二)
//把有剩余数据的一边的数据依次全部填充到temp
//左边的有序序列还有剩余的元素,就全部填充到temp
while( i <= mid){
temp[t] = arr[i];
t += 1;
i += 1;
}
//右边的有序序列还有剩余的元素,就全部填充到temp
while( j <= right){
temp[t] = arr[j];
t += 1;
j += 1;
}
//(三)
//将temp数组的元素拷贝到arr
//为什么 t=0 ?
//因为合并的时候按图所示数组:{8,4,5,7,1,3,6,2}
//最先进入的是8,4 left=0 right = 1
//经过上面的左边与右边比较,得出temp数组:4,8
// 此时清空指向temp数组的下标指针t 重新回到0
//tempLeft = 0 进行将temp数组里的4,8 赋值给arr数组
t = 0;
int tempLeft= left;
while( tempLeft <= right){
arr[tempLeft]=temp[t];
t += 1;//赋值成功后指向temp数组的下标指针t往后移
tempLeft +=1;//8,4 完成后到5,7 此时left=2 right = 3 ...
}
}
分+合实现归并排序
//int arr[]={8,4,5,7,1,3,6,2};
//int temp[]=new int[arr.length];
//mergeSort(arr,0,arr.length-1,temp);
//System.out.println("并归排序后"+ Arrays.toString(arr));
//分解方法
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2; //中间索引
//向左递归进行分解
//0 - mid 即是0 - 3 {8,4,5,7}
mergeSort(arr, left, mid, temp);
//向右递归进行分解
//mid+1 - midright 即是4 - 7 {1,3,6,2}
mergeSort(arr, mid + 1, right, temp);
//进行合并
merge(arr,left,mid,right,temp);
}
}
运行结果如下:
tempLeft:0 rigth:1
tempLeft:2 rigth:3
tempLeft:0 rigth:3
tempLeft:4 rigth:5
tempLeft:6 rigth:7
tempLeft:4 rigth:7
tempLeft:0 rigth:7
并归排序后[1, 2, 3, 4, 5, 6, 7, 8]
三、将数组归并排序C++代码:
#include <iostream>
#include<cstdio>
#include<vector>
#include<iterator>
#include<algorithm>
using namespace std;
//归并排序时间复杂度为O(nlogn)
void _sort(vector<int>&v,int begin,int end);
void merge_sort(vector<int>&v,int begin,int mid,int end);
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int n;
while(cin >> n){
vector<int>num(n);
for(int i=0;i<n;++i)
cin>>num.at(i);
_sort(num,0,n-1);
for(int i=0;i<num.size();++i)
cout<<num[i]<<" ";
cout<<endl;
//copy(num.begin(),num.end(),ostream_iterator<int,char>(cout," "));
}
return 0;
}
void _sort(vector<int>&v,int begin,int end){
if(begin<end){
int mid=(begin+end)/2;
_sort(v,begin,mid);
_sort(v,mid+1,end);
merge_sort(v,begin,mid,end);
}
return ;
}
void merge_sort(vector<int>&v,int begin,int mid,int end){ //从小到大排列
vector<int>temp;
int l=begin,m=mid+1,r=end;
while(l<=mid&&m<=r){
if(v.at(l)<=v.at(m)) {
temp.push_back(v.at(l));
++l;
}
else {
temp.push_back(v.at(m));
++m;
}
}
while(l<=mid)
temp.push_back(v.at(l++));
while(m<=r)
temp.push_back(v.at(m++));
for(int i=0;i<temp.size();++i)
v.at(i+begin)=temp.at(i);//注意这里一定要从begin开始
return ;
}
四、复杂度分析
时间复杂度: T(n)
归并算法是一个不断递归的过程,假设数组的元素个数是n。
时间复杂度是T(n)的函数: T(n) = 2*T(n/2) + O(n)
怎么解这个公式呢?
对于规模为n的问题,一共要进行log(n)层的大小切分;
每一层的合并复杂度都是O(n)
;
所以整体的复杂度就是O(nlogn)
。
空间复杂度: O(n)
由于合并n个元素需要分配一个大小为n
的额外数组,合并完成之后
,这个数组的空间就会被释放
。
五、例题
1、BM20 数组中的逆序对.
2、单链表的排序
3、数组中的逆序对