为什么需要这种数据结构
1.数组存储方式的分析
优点:通过下标方式访问元素,速度快,对于有序数组,还可以使用二分查找提高检索速度
缺点:如果要检索具体某个值,或者插入值会整体移动,效率较低
说到这个想必大家也一下想到arrarylist了吧,没错它底层存在着自动的数组扩容机制,原理大致如下,详细的可以自己看下源码
1.arrarylist底层维护了数组object类型的数组
2.当创建对象时,如果无法使用的是无参构造器,则初始elementData容量为0(jdk7)是10
3.如果使用的是指定容量capacity的构造器,则初始数组的容量为capacity
4.当添加元素时,先判断是否需要扩容,如果需要扩容,则调用grow方法,否则直接添加元素到合适位置
5.如果使用的是无参构造器,如果第一次添加需要扩容的话,则扩容数组长度为10,如过需要再次扩容的话,则扩容为1.5倍
6.如果使用的是指定容量的capacity的构造器,如果需要扩容也是直接扩容到1.5倍
2.链式存储的分析
优点:在一定程度上对数组存储方式优化:插入一个数值节点,只需要将插入节点,连接到链表中即可
缺点:在进行检索时,效率仍然低下
因为链表的优点,所以链表的创建并不需要连续的内存,它可以利用碎片化的内存,但进行检索时需要从头节点一个个进行遍历,在最差情况下要查找的在链表的末端,效率就相当低下了
3.树存储方式的分析
能提高数据存储、读取的速率,比如利用二叉树排序,既可以保证数据的检索速度,同时也可以保证数据饿插入,删除,修改的速度。
树的常用术语
1.节点 每一个圆圈就是一个结点对象
2.根节点 即A 他前边没有别的节点了
3.父节点 A就是B、C的父节点
4.子节点 B、C就是A的子节点
5.叶子节点 没有子节点的就是叶子节点
6.节点的权 节点的值
7.路径 从根节点找到该节点的路线
8.层 如图,处于同一层面的为一层
9.子树 如图左下
10.树的高度(最大层数)
11.森林 多颗子树就构成森林
二叉树的概念
1.树有很多种,每个节点最多只能有两个节点的一种形式称为二叉树
2.二叉树的子节点分为左节点和右节点
3.如果该二叉树的所有叶子节点都在最后一层,并且节点总数=2^n-1,n为层数。则我们称为满二叉树
4.如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。
二叉树的遍历方式分为3种
前序遍历:先输出父节点,在遍历左子树和右子树
中序遍历:先遍历左子树,在输出父节点,在遍历右子树
后序遍历:先遍历左子树,在遍历右子树,最后输出父节点
看输出父节点的顺序,就确定是前序中序还是后序
遍历步骤的思路分析
1.创建一颗二叉树
2.前序遍历
2.1先输出当前节点
2.2如果左子节点不为空,则递归前序遍历
2.2如果右子节点不为空,则递归继续前序遍历
3.中序遍历
3.1如果当前节点的左子节点不为空,则递归中序遍历
3.2输出当前节点
3.3如果当前节点的右子节点不为空,则递归中序遍历
4.后序遍历
4.1如果当前节点的左子节点不为空,则递归后序遍历
4.2如果当前节点的右子节点不为空,则递归后序遍历
4.3输出当前节点
使用前序、中序、后序查找指定的节点
前序查找思路
1.先判断当前节点的num是否等于要查找的
2.如果是相等,则返回当前节点
3.如果不等,则判断当前节点的左子节点是否为空,如果不为空,则递归前序查找
4.如果左递归找到节点则返回,否则继续判断,当前的节点的右子节点是否为空,如果不空向右递归前序查找
中序查找
1.判断当前节点的左子节点是否为空,如果不为空,则递归中序查找
2.如果找到,则返回,如果没有找到,就和当前节点比较,如果是则返回当前节点,否则继续进行右递归的中序查找
3.如果右递归中序找到就返回,否则返回null
后序查找思路
1.判断当前节点的左子节点是否为空,如果不为空,则递归后序查找
2.如果找到就返回,如果没有找到,就判断当前节点的右子节点是否为空,如果不为空,则右递归后续查找,如果找到就返回
3.和当前节点进行比较,找到就返回,没找到就是null
二叉树删除节点
要求
1.如果删除的节点是叶子节点,则删除该节点
2.如果删除的节点是非叶子节点,则删除该子树
简单的删除,这里没有涉及到往上提子节点的事儿
在这个要求下的思路是
首先先处理
如果树是空树,如果只有一个root节点,则等价将二叉树置空
然后依次判断
1.因为我们的二叉树是单向的,所以我们是判断当前节点的子节点是否需要删除节点,而不能去判断当前的节点是不是需要删除的节点
2.如果当前节点的左子节点不为空,并且左子节点就是要删除的节点,就将this.left置空,同时结束删除任务
3.如果当前节点的右子节点不为空,并且右子节点就是要删除的节点,就将this.right=null,同时结束删除任务
4.如果第二部和第三步没有删除节点,那么就需要向左子树进行递归删除
5.如果左子树没有成功,那么就需要向右子树进行递归删除
这些的代码就统一放在下边啦
public class BinaryTreeDemo {
public static void main(String[] args) {
//创建二叉树
BinaryTree binaryTree = new BinaryTree();
DataNode root = new DataNode(1, "chen");
DataNode zhangzhang = new DataNode(2, "zhangzhang");
DataNode xiang = new DataNode(3, "xiangxiang");
DataNode feifei = new DataNode(4, "feifei");
root.setLeft(zhangzhang);
root.setRight(xiang);
xiang.setRight(feifei);
binaryTree.setRoot(root);
binaryTree.preOrder();
System.out.println("*************************");
DataNode dataNode = binaryTree.preOrdersearch(1);
System.out.println(dataNode);
System.out.println("**********************");
DataNode dataNode1 = binaryTree.midOrdersearch(2);
System.out.println(dataNode1);
System.out.println("**********************");
System.out.println("*********************");
binaryTree.delNode(4);
DataNode dataNode2 = binaryTree.postOrdersearch(4);
System.out.println(dataNode2);
}
}
//定义BinaryTree
class BinaryTree{
private DataNode root;
public void setRoot(DataNode root) {
this.root = root;
}
//前序遍历
public void preOrder(){
if(this.root!=null){
this.root.preOrder();
}else{
System.out.println("二叉树为空");
}
}
//中序遍历
public void midOrder(){
if(this.root!=null){
this.root.midOrder();
}else{
System.out.println("nullpointexception");
}
}
//后序遍历
public void postOrder(){
if(this.root!=null){
this.root.postOrder();
}else{
System.out.println("nullpointexception");
}
}
//前序查找
public DataNode preOrdersearch(int num){
if(this.root!=null){
DataNode dataNode = this.root.preOrdersearch(num);
return dataNode;
}else{
System.out.println("null ");
return null;
}
}
//中序查找
public DataNode midOrdersearch(int num){
if(this.root!=null){
DataNode dataNode = this.root.midOrdersearch(num);
return dataNode;
}else{
System.out.println("null");
return null;
}
}
//后序查找
public DataNode postOrdersearch(int num){
if(this.root!=null){
DataNode dataNode = this.root.postOrdersearch(num);
return dataNode;
}else{
System.out.println("null");
return null;
}
}
/**删除节点
* 如果是叶子节点就直接删除该节点
*如果不是叶子节点 就直接删除该子树
*/
public void delNode(int num){
if(root==null){
System.out.println("树 为空");
return;
}
if(root.getNum()==num){
root=null;
return;
}
root.delNode(num);
}
}
//定义节点
class DataNode{
private int num;
private String name;
private DataNode left;
private DataNode right;
public DataNode(int num, String name) {
this.num = num;
this.name = name;
}
public int getNum() {
return num;
}
public void setNum(int num) {
this.num = num;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public DataNode getLeft() {
return left;
}
public void setLeft(DataNode left) {
this.left = left;
}
public DataNode getRight() {
return right;
}
public void setRight(DataNode right) {
this.right = right;
}
@Override
public String toString() {
return "DataNode{" +
"num=" + num +
", name='" + name + '\'' +
'}';
}
//编写前序遍历的方法
public void preOrder(){
System.out.println(this);
//递归向左子树
if(this.left!=null){
this.left.preOrder();
}
//递归右子树
if(this.right!=null){
this.right.preOrder();
}
}
//中序遍历的方法
public void midOrder(){
if(this.left!=null){
this.left.midOrder();
}
System.out.println(this);
if(this.right!=null){
this.right.midOrder();
}
}
//后序遍历的方法
public void postOrder(){
if(this.left!=null){
this.left.postOrder();
}
if(this.right!=null){
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
public DataNode preOrdersearch(int num){
//比较的次数
int count=0;
System.out.println(++count);
if(this.num==num){
return this;
}
DataNode resNode=null;
//判断左子节点是否为空
if(this.left!=null){
resNode=this.left.preOrdersearch(num);
}
if(resNode!=null){
return resNode;
}
if(this.right!=null){
resNode=this.right.preOrdersearch(num);
}
return resNode;
}
//中序遍历查找
public DataNode midOrdersearch(int num){
DataNode resNode=null;
if(this.left!=null){
resNode=this.left.midOrdersearch(num);
}
if(resNode!=null){
return resNode;
}
//比较的次数
int count=0;
System.out.println(++count);
if(this.num==num){
return this;
}
if(this.right!=null){
resNode=this.right.midOrdersearch(num);
}
return resNode;
}
//后序遍历查找
public DataNode postOrdersearch(int num){
DataNode resNode=null;
if(this.left!=null){
resNode=this.left.postOrdersearch(num);
}
if(resNode!=null){
return resNode;
}
if(this.right!=null){
resNode=this.right.postOrdersearch(num);
}
if(resNode!=null){
return resNode;
}
//比较的次数
int count=0;
System.out.println(++count);
if(this.num==num){
return this;
}
return null;
}
/**递归删除节点
* 如果是叶子节点就删除该节点
* 如果不是叶子节点就删除该子树
*/
public void delNode(int num){
//判断左子节点是否为空,是否权等于我们要删除的
if(this.left!=null && this.left.num==num){
this.left=null;
return;
}
//判断右子节点是否为空
if(this.right!=null && this.right.num==num){
this.right=null;
return;
}
//向左子树递归
if(this.left!=null){
this.left.delNode(num);
}
//向右子树递归
if(this.right!=null){
this.right.delNode(num);
}
}
}