二叉排序树(BST)

先看一个需求

给你一个数列(7,3,10,12,5,1,9),要求能够高效的完成对数据的查询和添加
解决方案分析

  • 使用数组
  1. 数组未排序,优点:直接在数组尾添加,速度快。缺点:查找速度慢
  2. 数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位置后,后面的数据需要整体移动,速度慢
  • 使用链式存储-链表
    不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动
  • 使用二叉排序树
二叉排序树介绍

二叉排序树:BST:(Binary Sort(serach) Tree),对于二叉排序树的任何一个非叶子节点,要求左子节点的指比当前节点的指小,右子节点的值比当前节点的值大。

特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据,对应的二叉排序树为:
在这里插入图片描述二叉排序树创建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如:数组为Array(7,3,10,12,5,1,9),创建成对应的二叉排序树为

二叉排序树的删除

二叉排序树的删除情况比较,有下面三种情况需要考虑

1.删除叶子节点(比如:2,5,9,12)

思路 :只针对删除叶子节点

  • 需要先去找到要删除的节点, targetnode

  • 找到targetnode的父节点 parent

  • 确定targetnode是parent的左子节点 还是右子节点

  • 根据前面的情况来对应删除

    左子节点 parent.left=null;

    右子节点parent.right=null;

2.删除只有一颗子树的节点(比如:1)

思路:

  • 先找到要删除的节点targetnode
  • 找到targetnode的父节点
  • 确定targetnode的子节点是左子节点还是右子节点
  • targetnode是parent的左子节点还是右子节点
  • 如果targetnode有左子节点
    • 如果targetnode是parent的左子节点parent.left=targetnode.left
    • 如果targetnode是parent的右子节点parent.right=targetnode.left
  • 如果targetnode有右子节点
    • 如果targetnode是parent 的左子节点parent.left=targetnode.right
    • 如果targetnode是parent的右子节点parent.right=targetnode.right

3.删除有两颗子树的节点(比如:7,3,10)

思路:

1.需求先去找到要删除的节点targetNode

2.找到targetnode的父节点 parent

3.从targetNode 的右子树找到最小的节点

4.用一个临时变量,将最小节点的值保存 temp=11;

5.删除该最小节点

6.targetnode.value=temp;
在这里插入图片描述

package cxf.xiangxiang;

public class feifeiTest {
    public static void main(String[] args) {
        BinarySorttree binarySorttree = new BinarySorttree();
        int[] arr={7,3,10,12,5,1,9};
        for (int i = 0; i < arr.length; i++) {
            binarySorttree.add(new Node(arr[i]));
        }
        binarySorttree.add(new Node(2));
        binarySorttree.midorder();
        Node search = binarySorttree.search(10);
        System.out.println(search);
//        binarySorttree.del(2);
//        binarySorttree.del(1);
//        binarySorttree.del(7);
        binarySorttree.del(7);
        System.out.println("--------");
        binarySorttree.midorder();
    }
}
class BinarySorttree{
    private Node root;
    //删除节点
    public void del(int value){
        if(root==null){
            return;
        }else{
            Node targetNode = search(value);
            //如果没有找到要删除的节点直接返回
            if(targetNode==null){
                return;
            }
            //找到了 要删除的节点  并且bst只有一个根节点 就直接删除根节点
            if(root.left==null && root.right==null){
                root=null;
                return;
            }
            //找节点的父节点
            Node node = searchParent(value);
            //如果要删除的节点是叶子节点
            if(targetNode.left==null && targetNode.right==null){
                if(node.right!=null && node.right.value==value){
                    node.right=null;
                }else if (node.left!=null && node.left.value==value){
                    node.left=null;
                }
            }else if(targetNode.left!=null && targetNode.right!=null){
                int i = delRightTreeMin(targetNode.right);
                targetNode.value=i;

            }else{//删除只有一个子树的节点
                //如果删除的节点只有左子节点
                if(targetNode.left!=null){
                    if( node.left!=null && node.left.value==value ){
                        node.left=targetNode.left;
                    }else if(node.right!=null && node.left.value==value ){
                        node.right=targetNode.left;
                    }
                }else{//要删除的节点只有右子树
                    if(node.left!=null && node.left.value==value){
                        node.left=targetNode.right;
                    }else if(node.right!=null && node.right.value==value){
                        node.right=targetNode.right;
                    }
                }

            }


        }
    }

    /**
     *
     * @param node   传入的节点(当前二叉排序树的根节点)
     * @return   返回的以node  为根节点的二叉排序树的最小值
     */
    public int delRightTreeMin(Node node){
        Node target=node;
        while(target.left!=null){
            target=target.left;
        }
        //将该根节点的二叉排序树的最小值删除并返回
        del(target.value);
        return target.value;
    }
    //查找要删除的节点
    public Node search(int value){
        if(root==null){
            return null;
        }else{
            return root.search(value);
        }
    }
    //查找要删除节点的父节点
    public Node searchParent(int value){
        if(root==null){
            return null;
        }else{
            return root.searchParent(value);
        }
    }
    public void add(Node node){
        if(root==null){
            root=node;
        }else{
            root.add(node);
        }

    }
    public void midorder(){
        if(root!=null){
            root.midOrder();
        }else{
            System.out.println("二叉排序树为空");
        }
    }
}
//创建node节点
class Node{
    int value;
    Node left;
    Node right;

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    public Node(int value){
        this.value=value;
    }

    /**
     *
     * @param value 要删除的节点的值
     * @return  如果找到就返回,如果找不到就返回null
     */
    public Node search(int value){
        if(value==this.value){
            return this;
        }else if (value <this.value){
            if(this.left==null){
                return null;
            }
            return this.left.search(value);
        }else{
            if(this.right==null){
                return null;
            }
            return this.right.search(value);
        }
    }
    //查找要删除节点的父节点
    public Node searchParent(int value){
        //如果当前节点就是要查找的节点的父节点就直接返回
        if((this.left!=null && this.left.value==value) || (this.right!=null && this.right.value==value)){
            return this;
        }else{
            //如果值小于当前值就向左去寻找
            if(this.left!=null && value<this.value){
                return this.left.searchParent(value);
            }else if(this.right!=null && value>=this.value){
                return this.right.searchParent(value);
            }else{
                return null;//没有找到父节点  同样的根节点的父节点也是null
            }
        }
    }
    //add方法往二叉排序树中添加节点
    public void add(Node node){
        if(node==null){
            return;
        }
        //判断传入节点的值,和当前节点值的关系
        if(node.value<this.value){
            if(this.left==null){
                this.left=node;
            }else{
                this.left.add(node);
            }
        }else{
            if(this.right==null){
                this.right=node;
            }else{
                this.right.add(node);
            }
        }

    }
    //中序遍历
    public void midOrder(){
        if(this.left!=null){
            this.left.midOrder();
        }
        System.out.println(this);
        if(this.right!=null){
            this.right.midOrder();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quare_feifei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值