第三章 微分中值定理与导数的应用 第八节 方程的近似解

第八节 方程的近似解

求解高次代数方程或其他类型方程的精确值比较困难,因此需要寻求方程的近似解.

第一步:确定具有唯一实根的所有隔离区间 [ a , b ] [a,b] [a,b],称为根的隔离.
第二步:以根的隔离区间的端点作为根的初始近似值,逐步改善根的近似值的精确值,直至求得满足精度要求的近似解.

一、二分法

\quad 为方便举例,将隔离区间 [ a , b ] [a,b] [a,b] 假设为 [ 1 , 5 ] , [1,5], [1,5],

\quad f ( x ) f(x) f(x) 在区间 [ 1 , 5 ] [1,5] [1,5] 上连续, f ( 1 ) ⋅ f ( 5 ) < 0 f(1)\cdot f(5)\lt0 f(1)f(5)<0,且方程 f ( x ) f(x) f(x) ( 1 , 5 ) (1,5) (1,5) 内仅有一个实根 ξ \xi ξ,于是 [ 1 , 5 ] [1,5] [1,5] 即是这个根的隔离区间.
\quad [ 1 , 5 ] [1,5] [1,5] 的中点 ξ 1 = 1 + 5 2 = 3 \xi_1=\frac{1+5}{2}=3 ξ1=21+5=3,计算 f ( 3 ) . f(3). f(3).

\quad 如果 f ( 3 ) = 0 f(3)=0 f(3)=0,那么 ξ = 3 \xi=3 ξ=3;
\quad 如果 f ( 3 ) f(3) f(3) f ( 1 ) f(1) f(1) 同号,那么 f ( 3 ) ⋅ f ( 5 ) < 0 f(3)\cdot f(5)\lt0 f(3)f(5)<0,此时取 a 1 = 3 , b 1 = 5 , [ 3 , 5 ] a_1=3,b_1=5,[3,5] a1=3,b1=5,[3,5] 成为新的隔离区间;
\quad 如果 f ( 3 ) f(3) f(3) f ( 5 ) f(5) f(5) 同号,那么 f ( 1 ) ⋅ f ( 3 ) < 0 f(1)\cdot f(3)\lt0 f(1)f(3)<0,此时取 a 1 = 1 , b 1 = 3 , [ 1 , 3 ] a_1=1,b_1=3,[1,3] a1=1,b1=3,[1,3] 成为新的隔离区间;

\quad 将隔离区间重复 n n n 次以上操作,求得隔离区间 [ a n , b n ] [a_n,b_n] [an,bn],若以 a n a_n an b n b_n bn 作为 ξ \xi ξ 的近似值,其误差小于 1 2 n ( b − a ) . \frac{1}{2^n}(b-a). 2n1(ba).


二、切线法

\quad f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上具有二阶导数, f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)\lt0 f(a)f(b)<0 f ′ ( x ) f'(x) f(x) f ′ ′ ( x ) f''(x) f′′(x) [ a , b ] [a,b] [a,b] 上保持定号(不变号),则方程 f ( x ) = 0 f(x)=0 f(x)=0 ( a , b ) (a,b) (a,b) 内有唯一的实根 ξ \xi ξ.
在这里插入图片描述
\quad 如果 f ( b ) f(b) f(b) f ′ ′ ( x ) f''(x) f′′(x) 同号,所以令 x 0 = b x_0=b x0=b,在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处的切线方程为 y − f ( x 0 ) − f ′ ( x 0 ) ( x − x 0 ) . y-f(x_0)-f'(x_0)(x-x_0). yf(x0)f(x0)(xx0). y = 0 y=0 y=0,解得 x x x,即与 x x x 轴的交点横坐标为 x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) , x_1=x_0-\frac{f(x_0)}{f'(x_0)}, x1=x0f(x0)f(x0),它比 x 0 x_0 x0 更接近方程的根 ξ \xi ξ. 同理,在 ( x 1 , f ( x 1 ) ) (x_1,f(x_1)) (x1,f(x1)) 处作切线,得到根的近似值 x 2 . x_2. x2.
\quad 以此类推,在点 ( x n , f ( x n ) ) (x_n,f(x_n)) (xn,f(xn)) 处作切线,得根的近似值 x n + 1 = x n − f ( x n ) f ′ ( x n ) . x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}. xn+1=xnf(xn)f(xn).
\quad 如果 f ( a ) f(a) f(a) f ′ ′ ( x ) f''(x) f′′(x) 同号,那么切线作点 ( a , f ( a ) ) (a,f(a)) (a,f(a)) 处,可记 x 0 = a x_0=a x0=a,按上述公式计算切线与 x x x 轴交点的横坐标.


三、割线法

\quad 利用切线法计算函数的导数比较复杂时,可考虑用割线代替切线 f ( x n ) − f ( x n − 1 ) x n − x n − 1 \frac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}} xnxn1f(xn)f(xn1)此时迭代公式成为 x n + 1 = x n − x n − x n − 1 f ( x n ) − f ( x n − 1 ) ⋅ f ( x n ) , x_{n+1}=x_n-\frac{x_n-x_{n-1}}{f(x_n)-f(x_{n-1})}\cdot f(x_n), xn+1=xnf(xn)f(xn1)xnxn1f(xn),其中, x 0 、 x 1 x_0、x_1 x0x1 为初始值,用割线代替切线,用割线与 x x x 轴交点的横坐标作为新的近似值. 这个方法叫做 割线法弦截法.


习题 3-8

总习题三

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超神的你

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值