第三章 搜索与图论(三)


image-20220809211221437

朴素版Prim

image-20220809211546078

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510,INF = 0x3f3f3f3f;

int n,m;
int g[N][N];
int dist[N];
bool st[N];

int prim()
{
    memset(dist,0x3f,sizeof dist);
    int res = 0;
    for(int i = 0;i < n;i++)
    {
        int t = -1;
        for(int j = 1;j <= n;j++)
            if(!st[j] && (t==-1 || dist[t]>dist[j]))
                t = j;
        if(i && dist[t] == INF) return INF;
        if(i) res += dist[t];
        
        for(int j = 1;j <= n; j++ ) dist[j] = min(dist[j],g[t][j]);
        
      
        st[t] = true;
    }
    return res;
}

int main()
{
    scanf("%d%d",&n,&m);
    
    
    memset(g,0x3f,sizeof g);
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        g[a][b] = g[b][a] =min(g[a][b],c);
        
    }
    int t = prim();
    if(t == INF) printf("impossible");
    else printf("%d\n",t);
    return 0;
    
}

Kruskal算法

image-20220809221232328

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 200010, INF = 0x3f3f3f3f;

int n, m;
//并查集中p
int p[N];
//不需要邻接表与图,只需要一个结构体
struct Edge
{
    int a, b, w;
	//重载小于号,方便排序
    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    //排序
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集
	//res:最小生成树中所有树边的权重之和,cnt:当前加入了多少条边
    int res = 0, cnt = 0;
    //从小到大枚举所有边
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;
		//找到集合
        a = find(a), b = find(b);
        //两个集合不连通
        if (a != b)
        {
            //合并集合
            p[a] = b;
            //更新两个变量
            //res:最小生成树中所有树边的权重之和,cnt:当前加入了多少条边
            res += w;
            cnt ++ ;
        }
    }
	//加的边数小于n-1 说明不连通
    if (cnt < n - 1) return INF;
    //输出长度之和
    return res;
}

int main()
{
    scanf("%d%d", &n, &m);

    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }

    int t = kruskal();

    if (t == INF) puts("impossible");
    else printf("%d\n", t);

    return 0;
}

染色法

染色法:判断一个图是不是二分图

性质:一个图是二分图当且仅当图中不含奇数环

奇数环:环的边的数量是奇数

二分图:把所有点分为两边,使得所有边都在集合之间,集合内部没有边

image-20220809223754783

如果不含奇数环一定是二分图

从前向后遍历,如果没有遍历过,染为一种颜色,将其余所有与它连通的点染为相反的颜色。

一条边的两个点一定属于不同的集合

一个连通块只要一个点确定了,其余所有点的颜色都确定了

由于图中没有奇数环,所以染色一定不会矛盾【反证法证明】

image-20220809223952695

步骤:用bfs【bfs不用手写队列,代码比bfs要短】

image-20220809224855497

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。

请你判断这个图是否是二分图。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。

输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。

数据范围
1≤n,m≤105
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 200010;

int n, m;
int h[N], e[M], ne[M], idx;
//表明当前点有没有被染过颜色
int color[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool dfs(int u, int c)
{
    //记录当前点的颜色
    color[u] = c;
	//遍历邻接点
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        //如果没有染过颜色
        if (!color[j])
        {
            //染成另外一种颜色:如果是1,染成2,如果是2,染成1
            //如果染色失败,返回false
            if (!dfs(j, 3 - c)) return false;
        }
        //如果已经染过颜色,判断是否矛盾即可
        else if (color[j] == c) return false;
    }

    return true;
}

int main()
{
    scanf("%d%d", &n, &m);
	//经常用到的邻接表存储图的方式
    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }
	//flag表示染的过程是否有矛盾发生
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (!color[i])
        {
            //如果dfs返回false,就定义有矛盾发生
            if (!dfs(i, 1))
            {
                flag = false;
                break;
            }
        }
	//flag等于true,过程很完美,没有矛盾发生
    if (flag) puts("Yes");
    else puts("No");

    return 0;
}

匈牙利算法

基本思路:左右两边匹配成功的最大数是多少

匹配:边的数量

匹配成功:没有两条边共用一个点

算法思路:

image-20220809230750250

最坏情况下时间复杂度:O(n*m)[每个男生遍历所有女生]

给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。

数据保证任意一条边的两个端点都不可能在同一部分中。

请你求出二分图的最大匹配数。

二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。

二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。

输入格式
第一行包含三个整数 n1、 n2 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。

输出格式
输出一个整数,表示二分图的最大匹配数。

数据范围
1≤n1,n2≤500,
1≤u≤n1,
1≤v≤n2,
1≤m≤105
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;
//虽然是无向图,只会找左边起点的边,只需要存左边指向右边
const int N = 510, M = 100010;

int n1, n2, m;
//邻接表
int h[N], e[M], ne[M], idx;
//右边点对应的点
int match[N];
//判重
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool find(int x)
{
    //枚举男生看上的妹子
    for (int i = h[x]; i != -1; i = ne[i])
    {
        //j为连接点的编号
        int j = e[i];
        //不重复考虑
        if (!st[j])
        {
            //设置标志
            st[j] = true;
            //如果没有匹配任何男生或者匹配的男生可以找到下家
            //两种情况只要有一种成功
            if (match[j] == 0 || find(match[j]))
            {
                //当前妹子匹配男生
                match[j] = x;
                return true;
            }
        }
    }
	//实在不行,返回false
    return false;
}

int main()
{
    scanf("%d%d%d", &n1, &n2, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }
	//res当前匹配的数量
    int res = 0;
    //一次分析男生
    for (int i = 1; i <= n1; i ++ )
    {
        //将所有女生标志清空,保证只考虑一遍
        memset(st, false, sizeof st);
        //找到
        if (find(i)) res ++ ;
    }

    printf("%d\n", res);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值