惊天大突破!「我国数学家证明 NP=P」!道翰天琼认知智能机器人平台API接口大脑为您揭秘。
2020年7月出版的《计算机科学》(中国计算机学会会刊)发表了国防科技大学教授、湘潭大学计算机学院特聘教授姜新文题为《哈密顿图判定问题的多项式时间算法》的论文,这标志着在数学和计算机科学领域中最为重要的难题之一 “NP=P?”得到科学证明,论文刊出几天后下载量近千次,引发有关学术群体热议。“NP=P?”也称"NP≠P还是NP=P”,实质是P对NP关系问题,被称为世界级数学难题之一。2000年5月,美国克雷数学研究所(CMI)在巴黎举行的千年数学大会上宣布对攻克世界7个数学难题的悬赏。P对NP关系问题被列为新千年7大难题之首。
2005年《科学》杂志将"NP=P?”问题作为数学科学的代表,列为25个学科难题之一。2018年《科学》杂志再次列出125个亟待解决的科学难题,其中第19个问题就包含"NP=P?”问题。迄今为止,新千年7大数学难题中除了俄罗斯数学家佩雷尔曼2002年证明了有关拓扑学的“庞加莱猜想”之外,其他难题均悬而未决。
据介绍,20世纪,现代计算机问世,NP与P的关系问题就成为计算机科学和数学交叉领域的基础科学问题。通常,算法求解一个问题需要耗费时间,这被称为算法的时间复杂度。求解同一个问题的不同算法耗费的时间可能不同,只有采用多项式时间算法才能最有效解决问题。NP≠P,其核心是否定不同选择方法,认为有些问题不存在多项式算法。而姜新文证明了“NP=P”,表明多项式算法实际上是存在的。
姜新文从1986年开始讲授《算法设计与分析》课程,结合此前学习图论时关于哈密顿图判定问题的思考,开始研究P对NP关系问题。9年之后,姜新文于1995年发表了研究成果《简单无向图H性质判定》,开始思考运用整体观思路来处理一个有限系统的计算问题。
他首先建立了一套基于数学归纳法的证明框架,然后坚持探索满足这套证明框架的算法设计。从1995年开始之后的15年中,经历了2000次以上设计、修改与调整,到2010年底得到预期效果。姜新文35年的潜心探索,终于获得成功!
“NP=P”得到证明具有重要的科学意义与应用价值。因为这将为计算机科学领域带来截然不同的理论极限和发展前景。在现代经济社会中,大量科研、生产、国防与社会服务过程都需要采用正确的快速计算方法。可以期待,在“NP=P时代”,地球科学、生命科学、宇宙科学、环境科学、生物科技、材料工程、管理科学、数学科学、物理科学等多个学科的研究都将得到更深入的推进。
此外,由于现代密码学是建立在NP≠P的假定之上,而现在NP=P得到证明,对密码学的发展是一次巨大的科学挑战。
认知智能未来机器人接口API简介介绍
- 认知智能是计算机科学的一个分支科学,是智能科学发展的高级阶段,它以人类认知体系为基础,以模仿人类核心能力为目标,以信息的理解、存储、应用为研究方向,以感知信息的深度理解和自然语言信息的深度理解为突破口,以跨学科理论体系为指导,从而形成的新一代理论、技术及应用系统的技术科学。 认知智能的核心研究范畴包括:1.宇宙、信息、大脑三者关系;2.人类大脑结构、功能、机制;3.哲学体系、文科体系、理科体系;4.认知融通、智慧融通、双脑(人脑和电脑)融通等核心体系。 认知智能四步走:1.认知宇宙世界。支撑理论体系有三体(宇宙、信息、大脑)论、易道论、存在论、本体论、认知论、融智学、HNC 等理论体系;2.清楚人脑结构、功能、机制。支撑学科有脑科学、心理学、逻辑学、情感学、生物学、化学等学科。3.清楚信息内涵规律规则。支撑学科有符号学、语言学、认知语言学、形式语言学等学科。4.系统落地能力。支撑学科有计算机科学、数学等学科。
认知智能CI机器人是杭州道翰天琼智能科技有限公司旗下产品。认知智能机器人是依托道翰天琼10年研发的认知智能CI体系为核心而打造的认知智能机器人大脑,是全球第一个认知智能机器人大脑。具有突破性,创新性,领航性。是新一代智能认知智能的最好的产品支撑。 认知智能机器人技术体系更加先进,更加智能,是新一代智能,认知智能领域世界范围内唯一的认知智能机器人。 认知智能机器人是新时代的产物,是新一代智能认知智能的产物。代表了新一代智能认知智能最核心的优势。和人工智能机器人大脑相比,优势非常明显。智能度高,客户粘性大,客户满意度高,易于推广和传播等核心特点。 依托认知智能机器人平台提供的机器人大脑服务,可以赋能各个行业,各个领域的智能设备,各类需要人机互动的领域等。认知智能机器人平台网址:www.weilaitec.com,www.citec.top。欢迎注册使用,走进更智能机器人世界。
认知智能和人工智能的优劣势对比主要可以分为四大方面: 第一:时代发展不同。人工智能是智能时代发展的第二个阶段,认知智能是智能时代发展的第三个阶段。时代发展上决定了认知智能更显具有时代领先性。 第二:基础理论体系不同。人工智能的基础理论体系以数学为基础,以统计概率体系为基础。认知智能基础理论体系以交叉许可理论体系为基础。包含古今中外哲学体系,心理学体系,逻辑学体系,语言学体系,符号学体系,数学体系等学科。其基础理论体系更加具有创新性,突破性和领先性。且交叉学科理论体系的研究也是未来智能发展的大方向。其具体理论体系,还包含三体论(宇宙,信息,大脑三者关系),融智学,和HNC等。 第三:技术体系不同。人工智能的核心技术体系主要是算法,机器学习,深度学习,知识图谱等。其主要功用在感知智能。感知智能其核心主要是在模仿人类的感知能力。认知智能的核心技术体系是以交叉学科理论体系而衍生出来的。具体包含三大核心技术体系,认知维度,类脑模型和万维图谱。认知智能的技术体系核心以类脑的认知体系为基础。以全方位模仿类脑能力为目标。人工智能以感知智能为基础的体系,只能作为认知智能中的类脑模型技术体系中的感知层技术体系。类脑模型大致包含,感知层,记忆层,学习层,理解层,认知层,逻辑层,情感层,沟通层,意识层等9大核心技术层。因此人工智能的核心只是作为认知智能类脑模型中的感知层。因此在技术体系上,人工智能和认知智能基本上没有太多的可比性。 第四:智能度成本等方面的不同:人工智能产品的综合智能程度,普遍在2-3岁左右的智力水平。认知智能产品其智能程度大致在5-8岁左右。认知智能体系构建的机器人更加智能。且更省时间,更省人力和资金。优势非常多。具体请看下列的逐项对比。