将数据封装到RDD集合中主要有两种方式:
- 并行化本地集合(Driver Program中)
- 引用加载外部存储系统(如HDFS、Hive、HBase、Kafka、Elasticsearch等)数据集
RDD创建的三种方式:
前两种:从创建的scala集合中创建
val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))
或者
val rdd4 = sc.makeRDD(List(1,2,3,4,5,6,7,8))
最后一种: 由外部存储文件创建
包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
val rdd2 = sc.textFile("/words.txt")
makeRDD方法底层调用了parallelize方法
并行化集合:
- 由一个已经存在的 Scala 集合创建,集合并行化,集合必须时Seq本身或者子类对象
演示范例代码,从List列表构建RDD集合:
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* Spark 采用并行化的方式构建Scala集合Seq中的数据为RDD
* - 将Scala集合转换为RDD
* sc.parallelize(seq)
* - 将RDD转换为Scala中集合
* rdd.collect()
* rdd.collectAsMap()
*/
object SparkParallelizeTest {
def main(args: Array[String]): Unit = {
// 创建应用程序入口SparkContext实例对象
val sparkConf: SparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName.stripSuffix("$"))
.setMaster("local[*]")
val sc: SparkContext = new SparkContext(sparkConf)
sc.setLogLevel("WARN")
// 1、Scala中集合Seq序列存储数据
val linesSeq: Seq[String] = Seq(
"hello me you her",
"hello you her",
"hello her",
"hello"
)
// 2、并行化集合创建RDD数据集
/*
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism
): RDD[T]
*/
val inputRDD: RDD[String] = sc.parallelize(linesSeq, numSlices = 2)
// 3、调用集合RDD中函数处理分析数据
val resultRDD: RDD[(String, Int)] = inputRDD
.flatMap(_.split("\\s+"))
.map((_, 1))
.reduceByKey(_ + _)
// 4、保存结果RDD到外部存储系统(HDFS、MySQL、HBase。。。。)
resultRDD.foreach(println)
// 应用程序运行结束,关闭资源
sc.stop()
}
}
外部存储系统用的多:
实际使用最多的方法:textFile,读取HDFS或LocalFS上文本文件,指定文件路径和RDD分区数目。
范例演示:从文件系统读取数据,设置分区数目为2,代码如下
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* 从HDFS/LocalFS文件系统加载文件数据,封装为RDD集合, 可以设置分区数目
* - 从文件系统加载
* sc.textFile("")
* - 保存文件系统
* rdd.saveAsTextFile("")
*/
object SparkFileSystemTest {
def main(args: Array[String]): Unit = {
// 创建应用程序入口SparkContext实例对象
val sparkConf: SparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName.stripSuffix("$"))
.setMaster("local[*]")
val sc: SparkContext = new SparkContext(sparkConf)
sc.setLogLevel("WARN")
// 1、从文件系统加载数据,创建RDD数据集
/*
def textFile(
path: String,
minPartitions: Int = defaultMinPartitions
): RDD[String]
*/
val inputRDD: RDD[String] = sc.textFile("data/input/words.txt",2)
println(s"Partitions Number : ${inputRDD.getNumPartitions}")
// 2、调用集合RDD中函数处理分析数据
val resultRDD: RDD[(String, Int)] = inputRDD
.flatMap(_.split("\\s+"))
.map((_, 1))
.reduceByKey(_ + _)
// 3、保存结果RDD到外部存储系统(HDFS、MySQL、HBase。。。。)
resultRDD.foreach(println)
// 应用程序运行结束,关闭资源
sc.stop()
}
}