置换群

置换群

1.1 算法分析

置换群通常用来解决一些涉及“本质不同”的计数问题,例如用 3 种颜色给一个立方体染色,求本质不同的方案数(经过翻转后相同的两种方案视为同一种)。

1.1.1 群

1.1.1.1 群的定义

若集合 S ≠ ∅ S \not= \varnothing S= S S S 上的运算 ⋅ · 构成的代数结构 ( S , ⋅ ) (S, ·) (S,) 满足以下性质:

  • 封闭性: ∀ a , b ∈ S , a ⋅ b ∈ S \forall a, b \in S, a · b \in S a,bS,abS
  • 结合律: ∀ a , b , c ∈ S , ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) \forall a, b, c \in S, (a · b) · c = a · (b · c) a,b,cS,(ab)c=a(bc)
  • 单位元: ∃ e ∈ S , ∀ a ∈ S , e ⋅ a = a ⋅ e = a \exist e \in S, \forall a \in S, e · a = a · e = a eS,aS,ea=ae=a
  • 逆元: ∀ a ∈ S , ∃ b ∈ S , a ⋅ b = b ⋅ a = e \forall a \in S, \exist b \in S, a · b = b · a = e aS,bS,ab=ba=e,称b为a的逆元,记为 a − 1 a^{-1} a1
    则称(S, ·)为一个群。
1.1.1.2 子群

( S , ⋅ ) 是 群 , T 是 S 的 非 空 子 集 , 且 ( T , ⋅ ) 也 是 群 , 则 称 ( T , ⋅ ) 是 ( S , ⋅ ) 的 子 群 (S, ·)是群,T是S的非空子集,且(T, ·)也是群, 则称(T, ·)是(S, ·)的子群 (S,)TS(T,)(T,)(S,)

1.1.1.3 置换

定义:
有限集合到自身的双射(即一一对应)称为置换。集合 S = { a 1 , a 2 , . . . , a n } S = \lbrace a_1, a_2, ..., a_n \rbrace S={ a1,a2,...,an} 上的置换可以表示为
[
\left(\begin{array}{cccc}
a_1 & a_2 & … & a_n \
a_{p1} & a_{p2} & … & a_{pn}\
\end{array}\right)
]
意为将 a i a_i ai 映射为 a p i a_{pi} api,其中 $p_1, p_2, …, p_n $是 1 , 2 , 3 , . . . , n 1, 2, 3,..., n 1,2,3,...,n 的一个排列。显然 S S S 上所有置换的数量为 。
乘法:
对于两个置换 $f =
\left(\begin{array}{cccc}
a_1 & a_2 & … & a_n \
a_{p1} & a_{p2} & … & a_{pn}\
\end{array}\right)
$ 和 $g=
\left(\begin{array}{cccc}
a_{p1} & a_{p2} & … & a_{pn}\
a_{q1} & a_{q2} & … & a_{qn}\
\end{array}\right)
$, f f f g g g的的乘积记为 $ f \cdot g = \left(\begin{array}{cccc}
a_ 1& a_2 & … & a_n \
a_{q1} & a_{q2} & … & a_{qn}\
\end{array}\right)$,简单来说就是先后经过 f f f 的映射,再经过 g g g 的映射。
置换群
易证,集合 S S S 上的所有置换关于置换的乘法满足封闭性、结合律、有单位元(恒等置换,即每个元素映射成它自己)、有逆元(交换置换表示中的上下两行),因此构成一个群。这个群的任意一个 子群 即称为 置换群
循环置换
循环置换是一类特殊的置换,可表示为:
$
\left(\begin{array}{cccc}
a_1 & a_2 & … & a_m\
\end{array}\right) = \left(\begin{array}{cccc}
a_1 & a_2 & … & a_m\
a_2 & a_3 & … & a_1\
\end{array}\right)
$
若两个循环置换不含有相同的元素,则称它们是 不相交 的。有如下定理:
任意一个置换都可以分解为若干不相交的循环置换的乘积,例如
$
\left(\begin{array}{cccc}
a_1 & a_2 & a_3 & a_4 & a_5\
a_3 & a_1 & a_2 & a_5 & a_4\
\end{array}\right) = \left(\begin{array}{cccc}
a_1 & a_3 & a_2\
\end{array}\right) \cdot \left(\begin{array}{cccc}
a_4 & a_5\
\end{array}\right)
$

1.1.2 轨道与稳定化子定理

∣ E k ∣ ∣ Z k ∣ = ∣ G ∣ |E_k||Z_k| = |G| EkZk=G
令元素

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值