单调栈

本文详细介绍了单调栈的数据结构及其应用场景,包括寻找每个数的相邻大小元素、找到以某个数为最大值/最小值的最长区间、求最长区间以及维护单调性。通过具体的ACwing830、CF1454、Largest Rectangle in a Histogram和Loongint的花篮等题目解析,展示了单调栈在解决区间最值问题上的高效性和实用性。
摘要由CSDN通过智能技术生成

单调栈

1.算法分析

单调栈顾名思义就是找一个单调的栈,可以处理如下问题:

1.针对每个数,寻找它和它左 / 右边第一个比它大 / 小的数的值,以及相距多少个数。

直接扫一遍单调栈即可

2.多个区间中的最值 / 某个数为最值的最长区间

正着扫一遍单调栈,反着扫一遍单调栈,然后对于对于i分别在左右两边找到比它小的数字的最长区间

3.求最长的区间,区间内的元素比左边界大,比右边界小

正着扫一遍单调栈,反着扫一遍单调栈。然后扫描一次数组,对于i元素,找到i右边连续的、最远的、比i大的数字j,然后从j往左枚举,判断比j小的、连续的、最远的元素是否在i的左侧,如果在左侧,那么就找到一个区间[i, j]。不断维护区间的最大长度。

4.维护单调性。

有些算法,比如二分、尺取等,必须有单调性才能成立,因此可以使用单调栈维护单调性,然后在单调栈内做二分、尺取

等等,总之就是可以优化与区间最值有关的操作

2.模板

#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 5;
int n, i,x;
stack<int> s;

int main(){
   
    cin >> n;
    for (i = 0; i < n;i++){
   
        cin >> x;
        while(!s.empty()&&s.top()>=x) s.pop();
        if(s.empty()) cout << -1 << ' ';
        else cout << s.top() << ' ';
        s.push(x);
    }
    return 0;
}

3.典型例题

3.1 针对每个数,寻找它和它左 / 右边第一个比它大 / 小的数的值,以及相距多少个数。

acwing830 单调栈

题意: 给定一个长度为N的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出-1。

题解: 直接单调栈处理,栈顶元素比当前元素大,那么栈顶元素出栈,当前元素入栈;栈顶元素比当前元素小,那么当前元素入栈。在当前元素入栈前的栈顶元素就是左边第一个比它小的数字。

代码:

#include<bits/stdc++.h>

using namespace std;

const int N = 1e5 + 5;
int n, i,x;
stack<int> s;

int main(){
   
    cin >> n;
    for (i = 0; i < n;i++){
   
        cin >> x;
        while(!s.empty()&&s.top()>=x) s.pop();
        if(s.empty()) cout << -1 << ' ';
        else cout << s.top() << ' ';
        s.push(x);
    }
    return 0;
}

3.2 对于每个点,找到以它为最大值/最小值的最长区间

CF1454 F. Array Partition

题意: 给定一个长度为n的数列,问是否能够将数列划分为3段,是的第一段的最大值=第二段的最小值=第三段的最大值,数列长度为1e5,数列中元素的大小为1e9

题解: 可以知道能够满足用来做最大值、最小值的元素必然出现了最少3次,因此可以考虑枚举这些元素。那么对于每个元素我们就需要找到包含它且它为最小值、最大值的区间,然后我们只需要判断该数字的某3个区间是否能够覆盖整个数列即可。那么怎么求包含某个数字的最小值、最大值的区间呢?只需要单调栈扫描四遍即可。

代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
int const N = 2e5 + 10;

LL n,m,p;
LL num[N];
vector<int>v[N];
vector<int>g;
int premi[N],curmi[N],premx[N],latemx[N];
int st[N];
int nn;

int getid(LL x){
   
    return lower_bound(g.begin(),g.end(),x) - g.begin() + 1;
}
int main(){
   
    int T;scanf("%d",&T);
    while(T--){
   
        scanf("%d", &n);
        for(int i=1;i<=n;i++) v[i].clear();
        g.clear();

        // 去重、离散化
        for(int i=1;i<=n;i++){
   
            scanf("%lld", &num[i]);
            g.push_back(num[i]);
        }
        sort(g.begin(),g.end());
        g.erase((unique(g.begin(),g.end())),g.end());
        nn = g.size();
        for(int i=1;i<=n;i++) num[i] = getid(num[i]);

        // 4次单调栈扫描得到每个数字左边比它小的、比它大的,右边比它小的、比它大的最边界的下标
        int s = 0;
        st[0] = 0;
        for(int i=1;i<=n;i++){
   
            while(s && num[i]>=num[st[s]]) s--;
            premx[i] = st[s]+1;  // 记录左边连续比他小的最后一个数字
            st[++s] = i;
        }
        s = 0;
        st[0] = n+1;
        for(int i=n;i>=1;i--
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值