文章目录
单调栈
1.算法分析
单调栈顾名思义就是找一个单调的栈,可以处理如下问题:
1.针对每个数,寻找它和它左 / 右边第一个比它大 / 小的数的值,以及相距多少个数。
直接扫一遍单调栈即可
2.多个区间中的最值 / 某个数为最值的最长区间
正着扫一遍单调栈,反着扫一遍单调栈,然后对于对于i分别在左右两边找到比它小的数字的最长区间
3.求最长的区间,区间内的元素比左边界大,比右边界小
正着扫一遍单调栈,反着扫一遍单调栈。然后扫描一次数组,对于i元素,找到i右边连续的、最远的、比i大的数字j,然后从j往左枚举,判断比j小的、连续的、最远的元素是否在i的左侧,如果在左侧,那么就找到一个区间[i, j]。不断维护区间的最大长度。
4.维护单调性。
有些算法,比如二分、尺取等,必须有单调性才能成立,因此可以使用单调栈维护单调性,然后在单调栈内做二分、尺取
等等,总之就是可以优化与区间最值有关的操作
2.模板
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int n, i,x;
stack<int> s;
int main(){
cin >> n;
for (i = 0; i < n;i++){
cin >> x;
while(!s.empty()&&s.top()>=x) s.pop();
if(s.empty()) cout << -1 << ' ';
else cout << s.top() << ' ';
s.push(x);
}
return 0;
}
3.典型例题
3.1 针对每个数,寻找它和它左 / 右边第一个比它大 / 小的数的值,以及相距多少个数。
acwing830 单调栈
题意: 给定一个长度为N的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出-1。
题解: 直接单调栈处理,栈顶元素比当前元素大,那么栈顶元素出栈,当前元素入栈;栈顶元素比当前元素小,那么当前元素入栈。在当前元素入栈前的栈顶元素就是左边第一个比它小的数字。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
int n, i,x;
stack<int> s;
int main(){
cin >> n;
for (i = 0; i < n;i++){
cin >> x;
while(!s.empty()&&s.top()>=x) s.pop();
if(s.empty()) cout << -1 << ' ';
else cout << s.top() << ' ';
s.push(x);
}
return 0;
}
3.2 对于每个点,找到以它为最大值/最小值的最长区间
CF1454 F. Array Partition
题意: 给定一个长度为n的数列,问是否能够将数列划分为3段,是的第一段的最大值=第二段的最小值=第三段的最大值,数列长度为1e5,数列中元素的大小为1e9
题解: 可以知道能够满足用来做最大值、最小值的元素必然出现了最少3次,因此可以考虑枚举这些元素。那么对于每个元素我们就需要找到包含它且它为最小值、最大值的区间,然后我们只需要判断该数字的某3个区间是否能够覆盖整个数列即可。那么怎么求包含某个数字的最小值、最大值的区间呢?只需要单调栈扫描四遍即可。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int const N = 2e5 + 10;
LL n,m,p;
LL num[N];
vector<int>v[N];
vector<int>g;
int premi[N],curmi[N],premx[N],latemx[N];
int st[N];
int nn;
int getid(LL x){
return lower_bound(g.begin(),g.end(),x) - g.begin() + 1;
}
int main(){
int T;scanf("%d",&T);
while(T--){
scanf("%d", &n);
for(int i=1;i<=n;i++) v[i].clear();
g.clear();
// 去重、离散化
for(int i=1;i<=n;i++){
scanf("%lld", &num[i]);
g.push_back(num[i]);
}
sort(g.begin(),g.end());
g.erase((unique(g.begin(),g.end())),g.end());
nn = g.size();
for(int i=1;i<=n;i++) num[i] = getid(num[i]);
// 4次单调栈扫描得到每个数字左边比它小的、比它大的,右边比它小的、比它大的最边界的下标
int s = 0;
st[0] = 0;
for(int i=1;i<=n;i++){
while(s && num[i]>=num[st[s]]) s--;
premx[i] = st[s]+1; // 记录左边连续比他小的最后一个数字
st[++s] = i;
}
s = 0;
st[0] = n+1;
for(int i=n;i>=1;i--