Codeforces Round #652 (Div. 2)
C. RationalLee
题意: 给你n个数,有m个朋友,每个朋友要拿其中w[i]个数,每个人获得的贡献是他拿的数的最大值加最小值,如果只有一个数最大值最小值都是它,让你求出所有人能获得的最大贡献是多少?
题解: 贪心。我们要尽可能地将大的数字作为小朋友获得的max值,然后如果给每个小朋友的max分配完,那么我们就要尽可能把大的数字作为小朋友的min值。因此,将数组从大到小排序玩,前m个作为小朋友的max值,然后不断选择还需要个数最小的小朋友,不断把当前能够取得的最大的给他。
**代码: **
D. TediousLee
题意: …
题解: 规律。找规律进行计数,发现每次新增加的加点个数为: a i = 2 ∗ a i − 2 + a i − 1 a_i = 2*a_{i-2}+a_{i-1} ai=2∗ai−2+ai−1,因此每次可以选择的鸡爪的数目为 s u m i = 4 ∗ a i − 2 + s u m i − 3 sum_i = 4 * a_{i-2} + sum_{i-3} sumi=4∗ai−2+sumi−3,数据量比较小,直接暴力for即可。当然,既然是这种递推式,也可以考虑矩阵快速幂优化,这样就可以处理到更大的数字,比如1e18
**代码: **
#include <bits/stdc++.h>
#define int long long
using namespace std;
int const MAXN = 3e6 + 10, mod = 1e9 + 7;
int n, m, T, a[MAXN], sum[MAXN];
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
a[1] = 1, a[2] = 1, sum[1] = 0, sum[2] = 0;
for (int i = 3; i <= 2e6; ++i) {
a[i] = (a[i - 1] + 2 * a[i - 2]) % mod;
sum[i] = (4 * a[i - 2] + sum[i - 3]) % mod;
}
cin >> T;
while(T--) {
cin >> n;
cout << sum[n] << endl;
}
return 0;
}
E. DeadLee
题意: 有n种食物,wi 表示第 i 种食物的个数,m个朋友,喜欢俩种食物x和y(x,y<=n),确定朋友吃食物的顺序,每次要是还有喜欢的食物就会吃一个(要是x和y都有则都吃x和y),让每个朋友都能吃到至少一个喜欢的食物。问是能够满足每个朋友至少都能吃到一个喜欢的食物,如果能的话,打印朋友的顺序;不能打印-1
题解: 很容易想到,要是需求小于等于 wi ,则第 i 种食物即使全部想要吃它的朋友都有吃到它那也是成立的 ,就不存在分配排序问题。那么我们可以安排这部分到最后,因为前面人即使把其他吃完也能保证能吃到第 i 种食物。为了方便处理,我们把x和y处理成无向图的边,需求就是度数d,而处理,虽然要把di<=wi的放在后面,我们可以先处理这部分,最后答案翻转即可,而核心部分的贪心就类似拓扑图去处理,每次选择合法部分(di<=wi)将连着 i 的度数-1。附上大佬链接:https://www.cnblogs.com/starve/p/13281938.html
**代码: **
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
const int M = 2e5 + 5;
#define pb push_back
#define MP make_pair
int w[M], du[M], book[M];
vector<pair<int, int> > g[M];
vector<int> ans;
queue<int> que;
int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
for (int x, y, i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
g[x].pb(MP(y, i));
g[y].pb(MP(x, i));
du[x]++, du[y]++;
}
for (int i = 1; i <= n; i++)
if (du[i] <= w[i]) que.push(i);
while (!que.empty()) {
int now = que.front();
que.pop();
for (auto it : g[now]) {
int v = it.first, id = it.second;
if (book[id]) continue;
book[id] = 1;
ans.pb(id);
if (--du[v] == w[v]) que.push(v);
}
}
if (ans.size() < m) return puts("DEAD"), 0;
puts("ALIVE");
reverse(ans.begin(), ans.end());
for (auto it : ans) printf("%d ", it);
return 0;
}