权值线段树
1.算法分析
1.1 特点
- 维护全局的值域信息,每个节点记录的是该值域的值出现的总次数。
- 使用二分的思想(离散化的时候,需要用到)
- 支持查询全局K小值,全局rank,前驱,后继等。
- 单词操作时间复杂度为O(logn)
- 空间复杂度为O(n)
- 相对于平衡树的优势:代码简单,速度快
- 劣势:值域较大时,我们需要离散化,变成离线数据结构
写起来时和普通的线段树基本一样,但是不需要build建树操作。每次插入一个数字x,相当于执行一次对于x的单点修改。删除一个数字,也相当于执行一次单点修改。对于查询操作,通过在权值线段树上二分,可以维护第k小、前驱、后继等信息。
1.2 技巧
① 每个节点维护出现的次数,就可以找到第k大的值
② 每个节点维护次数以及出现的数字的权值和,就可以找到前k大数字的和
2.模板
求第k大、前驱、后继等
#include <bits/stdc++.h>
#define int long long
using namespace std;
int const MAXN = 5e5 + 10;
int n, m, T, a[MAXN], dat[MAXN * 4];
vector<int> v;
void pushup(int rt) {
dat[rt] = dat[rt << 1] + dat[rt << 1 | 1];
}
void modify(int rt, int l, int r, int x, int y) {
if (l == x && r == x) {
dat[rt] += y;
return ;
}
int mid = (l + r) >> 1;
if (x <= mid) modify(rt << 1, l, mid, x, y);
else modify(rt << 1 | 1, mid + 1, r, x, y);
pushup(rt);
}
int query(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) return dat[rt];
int mid = (l + r) >> 1;
int res = 0;
if (L <= mid) res += query(rt << 1, l, mid, L, R);
if (mid < R) res += query(rt << 1 | 1, mid + 1, r, L, R);
return res;
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
v.push_back(a[i]);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
m = v.size();
for (int i = 1; i <= n; ++i) a[i] = lower_bound(v.begin(), v.end(), a[i]) - v.begin() + 1;
int res = 0;
for (int i = n; i >= 1; --i) {
modify(1, 1, m, a[i], 1);
if (a[i] == 1) continue;
res += query(1, 1, m, 1, a[i] - 1);
}
cout << res;
return 0;
}
3.典型例题
luogu P1908 逆序对
题意: 求出一个数列的逆序对.数列长度n ≤ 5×105
题解: 权值线段树维护每个数字出现的次数,然后每个数字x出现的时候只需要区间查询[1, x - 1]的出现次数即可
代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
int const MAXN = 5e5 + 10;
int n, m, T, a[MAXN], dat[MAXN * 4];
vector<int> v;
void pushup(int rt) {
dat[rt] = dat[rt << 1] + dat[rt << 1 | 1];
}
void modify(int rt, int l, int r, int x, int y) {
if (l == x && r == x) {
dat[rt] += y;
return ;
}
int mid = (l + r) >> 1;
if (x <= mid) modify(rt << 1, l, mid, x, y);
else modify(rt << 1 | 1, mid + 1, r, x, y);
pushup(rt);
}
int query(int rt, int l, int r, int L, int R) {
if (L <= l && r <= R) return dat[rt];
int mid = (l + r) >> 1;
int res = 0;
if (L <= mid) res += query(rt << 1, l, mid, L, R);
if (mid < R) res += query(rt << 1 | 1, mid + 1, r, L, R);
return res;
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
v.push_back(a[i]);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
m = v.size();
for (int i = 1; i <= n; ++i) a[i] = lower_bound(v.begin(), v.end(), a[i]) - v.begin() + 1;
int res = 0;
for (int i = n; i >= 1; --i) {
modify(1, 1, m, a[i], 1);
if (a[i] == 1) continue;
res += query(1, 1, m, 1, a[i] - 1);
}
cout << res;
return 0;
}
hdu1394 Minimum Inversion Number
题意: 给你一个排列0 ~ n-1,你可以循环左移,问最小的逆序对是多少?
题解: 权值线段树维护逆序对,然后循环左移时每次都会使得当前逆序对rev变为rev - (a[i] - 1) + (n - a[i])。因为比它小的都到它前面去了。
代码:
#include <bits/stdc++.h>
using namespace std;
int const MAXN = 5010;
int n, T, a[MAXN], dat[MAXN * 4];
void pushup(int rt) {
dat[rt] = dat[rt <