权值线段树

权值线段树是一种数据结构,用于维护全局值域信息,如出现次数和值的总和。它支持查询全局K小值、前驱、后继等操作,常用于解决逆序对、逆序对最小化、排名查询等问题。相比平衡树,权值线段树的优点在于代码简洁、速度快,但值域较大时需要离散化。文章提供了若干典型例题的题解,展示了权值线段树在不同问题中的应用。
摘要由CSDN通过智能技术生成

权值线段树

1.算法分析

1.1 特点

  1. 维护全局的值域信息,每个节点记录的是该值域的值出现的总次数。
  2. 使用二分的思想(离散化的时候,需要用到)
  3. 支持查询全局K小值,全局rank,前驱,后继等。
  4. 单词操作时间复杂度为O(logn)
  5. 空间复杂度为O(n)
  6. 相对于平衡树的优势:代码简单,速度快
  7. 劣势:值域较大时,我们需要离散化,变成离线数据结构

写起来时和普通的线段树基本一样,但是不需要build建树操作。每次插入一个数字x,相当于执行一次对于x的单点修改。删除一个数字,也相当于执行一次单点修改。对于查询操作,通过在权值线段树上二分,可以维护第k小、前驱、后继等信息。

1.2 技巧

① 每个节点维护出现的次数,就可以找到第k大的值

② 每个节点维护次数以及出现的数字的权值和,就可以找到前k大数字的和

2.模板

求第k大、前驱、后继等

#include <bits/stdc++.h>

#define int long long
using namespace std;

int const MAXN = 5e5 + 10;
int n, m, T, a[MAXN], dat[MAXN * 4];
vector<int> v;

void pushup(int rt) {
   
	dat[rt] = dat[rt << 1] + dat[rt << 1 | 1];
}

void modify(int rt, int l, int r, int x, int y) {
   
	if (l == x && r == x) {
   
		dat[rt] += y;
		return ;
	}
	int mid = (l + r) >> 1;
	if (x <= mid) modify(rt << 1, l, mid, x, y);
	else modify(rt << 1 | 1, mid + 1, r, x, y);
	pushup(rt);
}

int query(int rt, int l, int r, int L, int R) {
   
	if (L <= l && r <= R) return dat[rt];
	int mid = (l + r) >> 1;
	int res = 0;
	if (L <= mid) res += query(rt << 1, l, mid, L, R);
	if (mid < R) res += query(rt << 1 | 1, mid + 1, r, L, R);
	return res;
}

signed main() {
   
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);
	cin >> n;
	for (int i = 1; i <= n; ++i) {
   
		cin >> a[i];
		v.push_back(a[i]);
	}
	sort(v.begin(), v.end());
	v.erase(unique(v.begin(), v.end()), v.end());
	m = v.size();
	for (int i = 1; i <= n; ++i) a[i] = lower_bound(v.begin(), v.end(), a[i]) - v.begin() + 1;
	int res = 0;
	for (int i = n; i >= 1; --i) {
   
		modify(1, 1, m, a[i], 1);
		if (a[i] == 1) continue;
		res += query(1, 1, m, 1, a[i] - 1);
	}
	cout << res;
	return 0;
}

3.典型例题

luogu P1908 逆序对
题意: 求出一个数列的逆序对.数列长度n ≤ 5×105
题解: 权值线段树维护每个数字出现的次数,然后每个数字x出现的时候只需要区间查询[1, x - 1]的出现次数即可
代码:

#include <bits/stdc++.h>

#define int long long
using namespace std;

int const MAXN = 5e5 + 10;
int n, m, T, a[MAXN], dat[MAXN * 4];
vector<int> v;

void pushup(int rt) {
   
	dat[rt] = dat[rt << 1] + dat[rt << 1 | 1];
}

void modify(int rt, int l, int r, int x, int y) {
   
	if (l == x && r == x) {
   
		dat[rt] += y;
		return ;
	}
	int mid = (l + r) >> 1;
	if (x <= mid) modify(rt << 1, l, mid, x, y);
	else modify(rt << 1 | 1, mid + 1, r, x, y);
	pushup(rt);
}

int query(int rt, int l, int r, int L, int R) {
   
	if (L <= l && r <= R) return dat[rt];
	int mid = (l + r) >> 1;
	int res = 0;
	if (L <= mid) res += query(rt << 1, l, mid, L, R);
	if (mid < R) res += query(rt << 1 | 1, mid + 1, r, L, R);
	return res;
}

signed main() {
   
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);
	cin >> n;
	for (int i = 1; i <= n; ++i) {
   
		cin >> a[i];
		v.push_back(a[i]);
	}
	sort(v.begin(), v.end());
	v.erase(unique(v.begin(), v.end()), v.end());
	m = v.size();
	for (int i = 1; i <= n; ++i) a[i] = lower_bound(v.begin(), v.end(), a[i]) - v.begin() + 1;
	int res = 0;
	for (int i = n; i >= 1; --i) {
   
		modify(1, 1, m, a[i], 1);
		if (a[i] == 1) continue;
		res += query(1, 1, m, 1, a[i] - 1);
	}
	cout << res;
	return 0;
}

hdu1394 Minimum Inversion Number

题意: 给你一个排列0 ~ n-1,你可以循环左移,问最小的逆序对是多少?

题解: 权值线段树维护逆序对,然后循环左移时每次都会使得当前逆序对rev变为rev - (a[i] - 1) + (n - a[i])。因为比它小的都到它前面去了。

代码:

#include <bits/stdc++.h>

using namespace std;

int const MAXN = 5010;
int n, T, a[MAXN], dat[MAXN * 4];

void pushup(int rt) {
   
	dat[rt] = dat[rt <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值