前言
我写这个攻略,起因是我侄女2022高考志愿填报的失误,最后不得不选择复读,因为这个事情,一家人都深感遗憾,我想肯定会有很多家长和考生会同我们一样焦虑,可能还会犯同样的错误,于是就想搞出一个填报志愿的通用攻略。我利用半年的时间,研究了大量的资料,包括专业书籍、就业报告、教育产业研究报告,同时搜集了大量的高考数据,看了很多专家的视频讲解,还有很多大学生的讲述,也和多位家长朋友和做过人事管理的朋友讨论,根据我多年企业管理培训业的经验,以及这些年投资经历中总结的数据解读方法,写了本文,共1.6万字,40多分钟的视频讲解,希望对家长和考生有用。第一部分侧重于学业规划的思考,供家长和学生参考,第二部分指导报考志愿实操。这里要特别感谢John Peter,感谢他不厌其烦地把他在华尔街十年面试官的经历讲给我听,以及他宝贵的阅历和国际化的视野给我带来的启发。
图片来自网络
01
面对真实世界的人生选择
1.内卷时代
简单点儿说,高考就是决定谁学什么,然后学什么的人将来干什么的人才筛选制度。据教育部公布的数据,2022年参加高考的人数达到1193万人,再次创历史新高,而高考的升学率也高达90%以上,也就是有近1100万人将升入大学,而我们知道,经过3-4年的大学生活,等待他们的并不是与当初培养目标相对应的工作,而绝大多数大学生来说等待他们的是“废物、社会边角料……”等新的“身份”。
经济高增长的美好时代过去了,原来可以被高速发展掩盖过去的问题,现在就凸显出来了,原来靠速度解决的问题,现在必须靠时间来解决了。教育体制与市场化的人才需求不相适应的问题,以身份为基础的分配制度与市场激励不匹配的问题,这个体系的效率,这里不敢多说,你懂就好……内卷的时代已经到来,你要做好平常心对待一切的准备,以前的成功故事今后可能就不再适用了,罗振宇在2023年的《时间的朋友》跨年演讲中有句话“在内卷的尽头,请试试微雕”,要靠真本事吃饭了。
中国的人才选拔模式是严重依赖考试制度的,到目前为止,这个考试制度已经复杂到家长和考生必须去专门研究或者咨询专业机构的地步,否则你可能会吃了哑巴亏。虽然好的大学不一定代表着好的未来,或者说,这个观念将受在长期内受到挑战,不过,就近看,高考仍将是人生必须认真对待的一个关口。
从投资的角度看教育,教育是一个超长期的规划,所以,在考虑志愿填报之前有必要从更深层次和更广的视野去思考一下上大学这件事。
2.世界杯足球 Al Rihla 带来的思考
2022世界杯开赛后,这届的官方用球引起了我的注意,这是继1970年的正五边形和正六边形组成的精典足球形象以来第二次采用这种规则的直线几何形状(说错了请专业人士纠正)设计的足球外观形象。也就是说,这种“规则”的带有边和顶点的形象又可以给学生出题了。
由阿迪达斯设计的经典足球形象
图片均来自网络
Al Rihla可以近似为几块正的等大的三角形和几块等大四边形构成的一个多面体。问题来了,它分别由几块三角形和几块四边形构成呢?
解决这个问题需要利用多面体的一个性质-欧拉示性数不变的特征,V-E+F=2,V代表顶点数,E代表棱数,F代表面数。以正方体为例,正方体一共有8个顶点,12条边还有6个面,根据V-E+F计算可知,结果为2,正四面体,还有不规则的多面体,其计算结果都是2 。在这个足球的设计中,可以利用其性质计算三角形和四边形的数量,当然,计算它要比正方体复杂一些,但我想一个具备初中数学知识的学生,经过仔细的研究是可以算出来的。
这款足球的面数问题如何解决,我可以先引导一下,在经典的正五边形与正六边形拼合的足球中,设黑色五边形数量为x,白色六边形数量为y,由足球的图案可知,足球的“顶点”数为(5x+6y)/3,足球的棱数为(5x+6y)/2,6边形边数是五边形边数的2倍,由此根据欧拉定理可联立方程组:
(5x+6y)/3-(5x+6y)/2+(x+y)=2 ①
6y=2*5x ②
由此解得x=12,y=20
根据这个方法,可解出Al Rihla的拼合图形的数量。对此问题有兴趣的朋友可在文末进入付费文档观看。
我在查询这款足球的信息时看到,国内一家体育用品公司说这是他们制造的,我当时还挺自豪的,但我又看到一个正式的介绍说这款足球仍然是由阿迪达斯公司设计并提供的。如果我没猜错的话,我们国内的公司仅是生产而已。这就带来一个问题,为什么是阿迪达斯?因为这是他们设计的,设计才是他们真正的核心竞争力。
解这道题,最关键的是找出面数和顶点、棱这两者的数量关系,它不像正四面体、六面体的顶点、面和边那样显而易见,但经过训练,再解类似的题应该也不难。如果你再进一步深入思考这个问题,你会不会问这是怎么设计出来的?因为我们不能直接由欧拉公式:V-E+F=2直接推导出这个形状。它的四边形和三角形之间的关系是设计的而不是推导出来的。
我借此想说明的是,我们的教育是过多地把精力用在如何计算这种标准题型上面,知道一个原理:V-E+F=2,知道一个真实存在的结果(即这道题肯定有一个正确答案),然后计算它:比如,足球由12个五边形与20个六边形组成。
而我们看得出来,真正难的东西是原理和设计,V-E+F=2是由数学家欧拉发现的,而经典足球的形象是由阿迪达斯设计出来的。我们的教育就巧妙地避开了这两头。所有学生在一件事情上花费了大量的时间进行练习,可悲的是这些练习在工作中很少用到,工作中用到的恰恰是两头,要么是原理的发现,要么是新的设计(创造),而不是中间的熟练推演。