第二部分:数学
1.离散数学 :
- 命题和一阶逻辑
- 集合、关系、函数、偏序和格。幺半群、群
- 组合:计数、递推关系、生成函数
- 图:连通性、匹配、着色
离散数学学习大纲:
- 布尔函数的表示
- 布尔代数的性质
- 离散数学中的 PDNF 和 PCNF
- 功能完整性
- 命题逻辑介绍集1
- 命题逻辑介绍集2
- 命题等价
- 谓词和量词集 1
- 谓词和量词集 2
- 嵌套量词的一些定理
- 推理规则
- 共识定理
- 证明简介
- 组合基础
- 鸽巢原理
- PnC 和二项式系数
- 广义 PnC 集 1
- 广义 PnC 集 2
- 包含-排除及其各种应用
- 二项式定理的推论
- 生成函数介绍
- 生成函数 – 设置 2
- 集合论 | 介绍
- 集合论 | 设置操作
- 幂集及其属性
- 关系及其类型
- 关系及其表示
- 代表关系
- 关系和等价关系的闭包
- 功能 | 属性和类型
- 反函数和函数的组合
- 可能的功能总数
- 可能的等价关系数
- 团体
- 偏序和格
- 哈斯图
- 图论基础 - 设置 1
- 图论基础 - 第 2 组
- 图中的步行、小径、路径、自行车和电路
- 二叉树的节点数和高度
- 图形测量:长度、距离、直径、偏心率、半径、中心
- 图同构和连通性
- 平面图和图着色
- 欧拉和哈密顿路径
- 独立集、覆盖和匹配
- 匹配(图论)
- 图论实践题
- 递归关系
- 不同类型的递推关系及其解
- 重复关系的类型 - 第 2 组
2.线性代数:
- 矩阵、行列式
- LU分解
- 线性方程组
- 特征值和特征向量
线性代数学习大纲:
- 矩阵介绍
- 矩阵上的不同操作
- LU分解
- Doolittle 算法:LU 分解
- 线性方程组
- 特征值和特征向量
3.概率论:
- 随机变量
- 平均值、中位数、众数和标准差
- 均匀分布、正态分布、指数分布、泊松分布和二项分布
- 条件概率和贝叶斯定理
概率论学习大纲:
- 可能性
- 随机变量
- 均值、方差和标准差
- 全概率定律
- 条件概率的贝叶斯公式
- 概率分布集 1(均匀分布)
- 概率分布集 2(指数分布)
- 概率分布集 3(正态分布)
- 概率分布集 4(二项式分布)
- 概率分布集 5(泊松分布)
- 超几何分布模型
- 条件概率
- 协方差和相关性
4.微积分:
- 极限、连续性和可微性
- 最大值和最小值。均值定理
- 一体化
微积分学习大纲:
- 极限、连续性和可微性
- 拉格朗日中值定理
- 中值定理 | 罗尔定理
- 柯西中值定理
- 不定积分
- 查找任何多项式序列的第 n 项
- 序列、系列和求和
- 类别档案:工程数学
- 最后一分钟笔记——工程数学