导引
- 人工智能就是人工搭建的智能,什么是智能?草履虫在盐水与肉汤间的选择让我们觉得草履虫似乎也有着一种“智能”,虽然对于智能的定义有很多,但归为一点就是:能够对不同情景做出针对性反应的东西。所以搭建人工智能的“大脑”就是搭建一个可以根据不同环境来做出不同反应的“黑箱”,我们所熟知的Ghat GPT就可以被称为人工智能,假如Ghat GPT对我们输入的问题的问题答非所问,我们也就不会认为它是智能的了。
- 这种有输入便根据不同情景做出反应的“黑箱”可以让我们联想到数学上的函数(function)。函数最明显的特征就是自变量与因变量之间是一一对应的,自变量可以看作外界环境的变化(以Chat GPT为例,这里的自变量就是我们向它提出的不同的问题),因变量则是通过“黑箱”处理后所做出的特定的反应(即Ghat GTP根据不同问题所作出的不同回答)。
第一阶段
那么如何模拟这种“黑箱”?起初人们通过将自己的经验传入机器,这样使得机器成为一种庞大的数据库,通过调用其中的数据可以处理人们的问题,这就是最早的“经验主义”,而这种理论所构建的“黑箱”最致命的缺陷是,它只能模拟人类的经验,而不能随着时间的增长不断提升自己的水平(于是人们提出要创造一种有不断自我学习能力的机器,人类可以通过不断的训练和设立奖惩机制来纠正改进它,而这需要有一个可以不断学习的“黑箱”,这就是现在的人工智能)
第二阶段(感知机产生)
怎么才能做到像人类一样不断学习?不同于动物,这种“黑箱”何以训练?在“经验主义”之后发展出的“联结主义”提出了一个方法,那就是“仿生”,向谁仿?大自然早已提供了答案,那就是人类大脑,即通过模拟人的大脑中单个神经元的运作及连接来实现人工智能对人脑的无限逼近!
可是如何模拟神经元呢?让我们关注的大脑的基本单元——神经元细胞,我们知道神经元细胞中的胞体像一个精密的电信号处理系统,每个神经元之间依靠电化学信息进行传递,神经元就像电线一样,这是不是意味着可以利用电路来进行模拟呢?科学家用电容、电阻来模拟神经元中的电信号的产生与传播过程,生物体中的电信号主要由离子产生,离子通道控制着离子的进出,电阻模拟的就是离子通道,细胞膜通过膜两侧的离子积累从而存储电荷,这便对应着电容器的作用,事实证明,这个实验也确实成功了,在神经元模拟问题取得重大性突破后,感知机便应运而生。
一种简单的计算机神经网络如图所示:
(是否感受到计算机神经网络与人脑神经网络的相似性)
感知机的原理与大脑中神经元的运作极为相似,感知机的输入、权重、激活函数分别对应神经元树突接受信号、突触强度、轴突发放信号过程,如果说感知机只是模拟了人脑最基本的神经网络单元,那么现在的人工智能就是更复杂、更多层的感知机与其他技术的组成,相当于现代人工智能拥有更复杂的神经网络。现如今的阿尔法狗(AlphaGo)与Ghat GPT就拥有着这种由复杂神经网络架构的“黑箱”,虽然它尚未达到人脑的复杂度。