题目描述
Description
Dio是荒木庄的面包师傅,和手部美容师Bo良Ki影是好朋友。Bo良Ki影会在每个月的某一天来买注入爱心的小面包。面包的爱心总值是爱心小面包的乘积。这个月Dio会把n个爱心值分配到许多个爱心小面包中,为了给好朋友Bo良Ki影最大的爱心总值,他要如何分配呢?
注意:爱心总值可能很大,请使用long long存储答案
Input
第一行输入一个整数T,表示有T组数据。(1<=T<=1000)
每组数据输入一个整数n,表示Dio的爱心值。(1<=n<=100)
Output
每组数据输出一个整数,表示最大的爱心总值
Sample Input
2
3
5
Sample Output
3
6
解题思路:
B题在草稿纸上的过程
刚开始觉得拆成两个数,如果n是偶数就直接(n/2)*(n/2)最大,n是奇数就(n/2)(n/2 + 1)
但是之后试了一下把大数拆了,发现不太对劲,发现拆成3和2才会最大
找到此结论(拆成3和2乘积才会最大)后
我们就要思考拆成多少个3和2呢?通过我草稿纸上的演算,找到了规律,通过除3的余数来进行判断!
- 余数为1
- 余数为2
- 余数为0
之所以余数为0放到最后是因为刚开始根本没想到
测了个9的样例发现不对劲才改的
AC代码
#include<stdio.h>
int main()
{
int T;//样例个数
int n,i;//n为Dio的爱心值,i为for专用
long long sum;//题目提醒了我们要用long long
scanf("%d",&T);
for ( i = 0; i < T; i++)
{
sum = 1;//注意!如果不在for里面初始化sum = 1,乘积会累积
scanf("%d",&n);
if (n <= 4) {printf("%d\n",n);}//特殊样例,易得
else
{
int times,yu;//times决定拆成多少个3,yu是求余
times = n/3;
yu = n%3;
if (yu==0)//整除就不用*2
{
for (int k = 1; k <= times; k++)
{
sum *= 3;
}
}
if (yu==1) //余1要乘两次2
{ times--;
for (int k = 1; k <= times; k++)
{
sum *= 3;
}
sum = sum *2*2;
}
if (yu==2)//余2乘一次2
{
for (int k = 1; k <= times; k++)
{
sum *= 3;
}
sum = sum*2;
}
printf("%lld\n",sum);
}
}
return 0;
}