自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 用AI学代码300天计划day6

本文介绍了“用AI学代码300天计划”第6天的学习内容,主要围绕HS数据集和代码学习展开。首先,详细解析了三个数据集:cell_line_gene_expression.csv(细胞系基因表达数据)、drug_smiles.csv(药物SMILES表示)和drug_synergy.csv(药物协同作用数据)。接着,代码学习部分重点讲解了main.py和process_data.py中的关键代码片段。main.py展示了如何使用PyTorch的DataLoader加载图数据,并介绍了Mol对象的创建与操作,包

2025-05-14 20:18:55 724

原创 用AI学代码300天计划day5

这是一个 SyntaxError 错误,错误出现在 mc_bin_client 库的 mc_bin_client.py 文件里,具体是 except MemcachedError, e: 这一行。使用 torch.einsum 时,输入张量的维度与 einsum 的方程不匹配。首先,找到 mc_bin_client.py 文件的路径,在错误信息里可以看到它的路径是。master_atom:如果为 True,则创建一个虚拟原子,该原子与分子中的每个其他原子都有连接,其特征初始化为其他原子特征的平均值。

2025-04-29 17:10:16 892

原创 用AI学代码300天计划day4

ResNet 模型的第一个卷积层 nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) 期望输入数据有 3 个通道,但实际传入的输入数据 [128, 256, 1, 1] 有 256 个通道。在这个修改后的代码中,我们运用 unsqueeze 方法给 f 添加了通道维度和高度、宽度维度,让其形状从 [128, 256] 变为 [128, 256, 1, 1],这样就符合 conv2d 层的输入要求了。修改 ResNet 模型的输入通道数。

2025-03-27 11:05:03 378

原创 用AI学代码300天计划day3

具体来说,错误出现在 utils.py 文件的 metrics_graph 函数中的 return auc, aupr, f1_score[0, 0], accuracy[0, 0] 这一行。从你给出的错误信息 IndexError: tuple index out of range 以及错误发生的代码行 thresholds_num = thresholds.shape[1] 能够知道,thresholds 是一个一维数组,而你尝试访问它的第二个维度(索引为 1),这就会引发索引越界错误。

2025-03-13 22:09:37 1152

原创 用AI学代码300天计划day2

fusion_logits = self.p_net(fusion_logits).squeeze(1) * self.k:应用平均池化层 self.p_net 到 fusion_logits 上,然后移除插入的维度,恢复到 (b, d) 的形状。这段代码的主要功能是对 pair 列表中的每个元素进行处理,将细胞系和药物的原始标识符转换为对应的索引,并将转换后的信息以及原始的第三个值(可能是某种标签,如 IC50 值)组合成一个新的列表,最后将这些新列表添加到 all_pairs 列表中。

2025-03-05 20:47:41 1509

原创 用AI学代码300天计划day1

今天把BANDRP这个代码跑了起来,文章还没有看完,把自己想了解的都学习一遍!加油加油!

2025-02-19 21:34:31 1704

原创 深度学习打卡第二天-python的模块(module)、包(package)及pip的学习记录

pip是Python的包管理工具,全称为"Package Installer for Python"。它是Python官方推荐的包管理工具,用于方便地安装、升级和管理Python包。

2025-01-12 09:32:07 393

原创 深度学习打卡第一天-图论基础学习记录

图是描述复杂事物的数据表现形式。由节点和边组成,数学上一般表示图为G=(V,E),其中V(vertical)代表节点,可以被理解为事物;E(edge)代表边,描述两个事物之间的关系。图的优势:可轻松描述不规则数据,充分利用数据间关系信息。

2025-01-09 12:21:11 365

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除