CINTA群、子群

CINTA作业四:群、子群

一、证明:设 G 为群,且 a, b, c ∈ G。如果 ba = ca,则 b = c;并且,如果 ab = ac,则 b = c。

证明:

设e为G的单位元,任意x∈G满足 x·e = x =e·x
G中必然存在唯一 a 的逆元 a-1,满足 a·a-1= e = a-1·a
若 b·a = c·a,等号两边群操作a的逆元 a-1

b·a·a -1 = c·a·a -1
b·e = c·e
b = c

若 ba = ca,则 b = c 得证。

若 a·b = a·c,等号两边群操作a的逆元 a-1

a·a -1 ·b= a·a -1·c
e·b = e·c
b = c

若 a·b = a·c,则 b = c 得证。

二、设 G 是群,∀a, b ∈ G,以下性质成立。

∀m, n ∈ Z,gmgn = gm+n
∀m, n ∈ Z,(gm)n = gmn
∀n ∈ Z,(gh)n = (h−1g−1)−n;如果 G 是阿贝尔群,则 (gh)n = gnhn

证明

gmgn= g ⋅ g ⋅ g … g ⋅ g ⏟ \underbrace{g·g·g…g·g} ggggg · g ⋅ g ⋅ g … g ⋅ g ⏟ \underbrace{g·g·g…g·g} ggggg = gm+n
        m个g        n个g

第一点得证;

(gm)n = g m ⋅ g m ⋅ g m … g m ⋅ g m ⏟ \underbrace{g^m·g^m·g^m…g^m·g^m} gmgmgmgmgm = gmn
            n个gm

第二点得证;

(gh)n = g h ⋅ g h ⋅ g h … g h ⋅ g h ⏟ \underbrace{gh·gh·gh…gh·gh} ghghghghgh
       n个gh
(h−1g−1)−n= ( h − 1 g − 1 ) − 1 ⋅ ( h − 1 g − 1 ) − 1 … ( h − 1 g − 1 ) − 1 ⋅ ( h − 1 g − 1 ) − 1 ⏟ \underbrace{(h^{-1}g^{-1})^{-1}·(h^{-1}g^{-1})^{-1}…(h^{-1}g^{-1})^{-1}·(h^{-1}g^{-1})^{-1}} (h1g1)1(h1g1)1(h1g1)1(h1g1)1
               n个(h-1g-1)-1
证(gh)n = (h−1g−1)−n,只需证 gh = (h-1g-1)-1

  gh = (h -1g -1) -1
    gh·h -1g -1 = (h -1g -1) -1· (h -1g -1) 1
e= e

第三点 (gh)n = (h−1g−1)−n 得证;
若G 是阿贝尔群,即G是交换群,则 (gh)n= gnhn 显然成立;

第三点得证

三、证明对任意偶数阶群G, 都存在 g ∈ G,g ≠ e 且 g2 = e 。

证明:

群G中有唯一一个单位元e,每个元素a都有其唯一逆元a-1使得 a a-1=e
假设群G的阶为n,且 2 | n,除去单位元外剩余 n-1 个元素
由于n-1为奇数,n-1个元素必然分为两种情况:
i) a a-1=e 且 a≠ a-1 (a,a-1∈G)(成对)
ii) a a-1=e 且 a=a-1 (a,a-1∈G)
因而,偶数阶群G中,都存在g∈G,g≠e,且 gg-1=gg=g2=e

四、群 G 的非空子集 H 是 G 的子群,当且仅当 H ≠ ∅,且对任意 a, b ∈ H,ab−1 ∈ H。

证明:

H成群,a、b∈H,其逆元a-1,b-1亦属于H
由群的封闭性,可知 a、b-1∈H 满足 ab-1∈H

五、设G是群,对任意 n ∈ N,i ∈ [0,n], g i ∈ G, 证明g0g1…gn的逆元是gn-1…g1-1g0-1

证明:

已知g0, g1, … gn∈G,因封闭性,x=g0g1…gn∈G,
求其逆元x-1
g0g1…gn· x-1=e
g0g1…gn·gn-·x-1=e·gn-
g0g1…gn-1·gn-1-·x-1=e·gn-·gn-1-

g0g0-x-=egn-1…g1-1g0-
x-1=gn-1…g1-1g0-1
证得 g0g1…gn的逆元为gn-1…g1-1g0-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值