关于numpy的简单运用
import numpy as np
# 首先创建一个简单的一维数组
arr = np.array([1, 2, 3])
print(arr)
'''
[1 2 3]
'''
# 二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
print(arr1)
'''
[[1 2 3]
[4 5 6]]
'''
# 乍一看好像数组和列表并没区别,但其实有
# 数组和列表的区别是什么?
# 数组中存储的数据元素类型必须是同一类型
# 优先级: 字符串 > 浮点型 > 整数
arr2 = np.array([1, 2.2, 'three']) # ['1' '2.2' 'three']
arr2 = np.array([1, 2.2, 3]) # [1. 2.2 3. ]
print(arr2)
# 下边是numpy模块中一些函数的使用
arr3 = np.ones(shape=(3, 4)) # 此函数用于返回一个三行四列的元素都为1的矩阵
print(arr3)
'''
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
'''
arr4 = np.linspace(0, 100, num=20) # 返回一个一维的从0到100的等差数列数组,元素数量为20