关于numpy模块的简单运用

本文探讨了Python中广泛使用的numpy库的基础应用,重点介绍了其在数值计算和数据分析中的重要性,适合初学者入门。
摘要由CSDN通过智能技术生成

关于numpy的简单运用

import numpy as np

# 首先创建一个简单的一维数组
arr = np.array([1, 2, 3])
print(arr)
'''
[1 2 3]
'''

# 二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
print(arr1)  
'''
[[1 2 3]
 [4 5 6]]
'''
# 乍一看好像数组和列表并没区别,但其实有
# 数组和列表的区别是什么?
#     数组中存储的数据元素类型必须是同一类型
#     优先级: 字符串 > 浮点型 > 整数

arr2 = np.array([1, 2.2, 'three'])  # ['1' '2.2' 'three']
arr2 = np.array([1, 2.2, 3])  # [1.  2.2 3. ]
print(arr2)

# 下边是numpy模块中一些函数的使用

arr3 = np.ones(shape=(3, 4))   # 此函数用于返回一个三行四列的元素都为1的矩阵
print(arr3)
'''
[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [1. 1. 1. 1.]]
'''

arr4 = np.linspace(0, 100, num=20)  # 返回一个一维的从0到100的等差数列数组,元素数量为20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值