我是一名立志把细节说清楚的博主,欢迎【关注】🎉 ~
原创不易, 如果有帮助 ,记得【点赞】【收藏】 哦~ ❥(^_-)~
如有错误、疑惑,欢迎【评论】指正探讨,我会尽可能第一时间回复的,谢谢支持
原题
Queries
表:
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| query_name | varchar |
| result | varchar |
| position | int |
| rating | int |
+-------------+---------+
此表可能有重复的行。
此表包含了一些从数据库中收集的查询信息。
“位置”(position
)列的值为 1 到 500 。
“评分”(rating
)列的值为 1 到 5 。评分小于 3 的查询被定义为质量很差的查询。
将查询结果的质量 quality
定义为:
各查询结果的评分与其位置之间比率的平均值。
将劣质查询百分比 poor_query_percentage 为:
评分小于 3 的查询结果占全部查询结果的百分比。
编写解决方案,找出每次的 query_name
、 quality
和 poor_query_percentage
。
quality
和 poor_query_percentage
都应 四舍五入到小数点后两位 。
以 任意顺序 返回结果表。
结果格式如下所示:
示例 1:
输入:
Queries
table:
+------------+-------------------+----------+--------+
| query_name | result | position | rating |
+------------+-------------------+----------+--------+
| Dog | Golden Retriever | 1 | 5 |
| Dog | German Shepherd | 2 | 5 |
| Dog | Mule | 200 | 1 |
| Cat | Shirazi | 5 | 2 |
| Cat | Siamese | 3 | 3 |
| Cat | Sphynx | 7 | 4 |
+------------+-------------------+----------+--------+
输出:
+------------+---------+-----------------------+
| query_name | quality | poor_query_percentage |
+------------+---------+-----------------------+
| Dog | 2.50 | 33.33 |
| Cat | 0.66 | 33.33 |
+------------+---------+-----------------------+
解释:
Dog
查询结果的质量为 ((5 / 1) + (5 / 2) + (1 / 200)) / 3 = 2.50
Dog
查询结果的劣质查询百分比为 (1 / 3) * 100 = 33.33
Cat
查询结果的质量为 ((2 / 5) + (3 / 3) + (4 / 7)) / 3 = 0.66
Cat
查询结果的劣质查询百分比为 (1 / 3) * 100 = 33.33
题解
题解一:
SELECT query_name, ROUND(AVG(rating / position),2) AS quality, ROUND(AVG((rating < 3)*100),2) AS poor_query_percentage
FROM queries
GROUP BY query_name
HAVING query_name IS NOT NULL
题解二:
SELECT query_name, ROUND(AVG(rating / position),2) AS quality, ROUND(AVG((rating < 3)*100),2) AS poor_query_percentage
FROM queries
WHERE query_name IS NOT NULL
GROUP BY query_name;
解题笔记
关键字解析
AS
关键字,为某 列 或 表 起别名。ROUND()
函数,对目标值四舍五入精确到小数点几位。- 格式:ROUND(目标值,精确位数)。
AVG()
求平均值,本题的用法上需要重点注意:直接使用过滤条件能计算出所占百分比。WHERE
关键字,接过滤条件。GROUP BY
关键字,结果分组。HAVING
关键字,对分组进行过滤。
GROUP BY
关键字和 HAVING
关键字,详情请看文章:【MySQL】数据分组(关键字:GROUP BY)过滤分组(关键字:HAVING)
性能分析
性能层面: 解法二 >
解法一。
具体分析:
- 解法一:先查询出数据,分组,再对无用分组过滤。
- 解法二:直接过滤去除无效数据,再分组。
- 相对于解法一,省去了对无效数据的分组筛选处理。自然性能更好。
我是一名立志把细节说清楚的博主,欢迎【关注】🎉 ~
原创不易, 如果有帮助 ,记得【点赞】【收藏】 哦~ ❥(^_-)~
如有错误、疑惑 ,欢迎【评论】指正探讨,我会尽可能第一时间回复的,谢谢支持