【代码随想录19】回溯01

在这里插入图片描述

77.组合

题目描述

给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

提示:

  • 1 <= n <= 20
  • 1 <= k <= n

参考代码

class Solution {
    List<Integer> temp = new ArrayList<Integer>();
    List<List<Integer>> ans = new ArrayList<List<Integer>>();

    public List<List<Integer>> combine(int n, int k) {
        dfs(1, n, k);
        return ans;
    }

    public void dfs(int cur, int n, int k) {
        // 剪枝:temp 长度加上区间 [cur, n] 的长度小于 k,不可能构造出长度为 k 的 temp
        if (temp.size() + (n - cur + 1) < k) {
            return;
        }
        // 记录合法的答案
        if (temp.size() == k) {
            ans.add(new ArrayList<Integer>(temp));
            return;
        }
        // 考虑选择当前位置
        temp.add(cur);
        dfs(cur + 1, n, k);
        temp.remove(temp.size() - 1);
        // 考虑不选择当前位置
        dfs(cur + 1, n, k);
    }
}

216.组合总和III

题目描述

找出所有相加之和为 nk 个数的组合,且满足下列条件:

  • 只使用数字1到9
  • 每个数字 最多使用一次

返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

示例 1:

输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。

示例 2:

输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。

示例 3:

输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。

提示:

  • 2 <= k <= 9
  • 1 <= n <= 60

参考代码

class Solution {
    List<Integer> temp = new ArrayList<Integer>();
    List<List<Integer>> ans = new ArrayList<List<Integer>>();

    public List<List<Integer>> combinationSum3(int k, int n) {
        for (int mask = 0; mask < (1 << 9); ++mask) {
            if (check(mask, k, n)) {
                ans.add(new ArrayList<Integer>(temp));
            }
        }
        return ans;
    }

    public boolean check(int mask, int k, int n) {
        temp.clear();
        for (int i = 0; i < 9; ++i) {
            if (((1 << i) & mask) != 0) {
                temp.add(i + 1);
            }
        }
        if (temp.size() != k) {
            return false;
        }
        int sum = 0;
        for (int num : temp) {
            sum += num;
        }
        return sum == n;
    }
}

17.电话号码的字母组合

题目描述

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。

img

示例 1:

输入:digits = "23"
输出:["ad","ae","af","bd","be","bf","cd","ce","cf"]

示例 2:

输入:digits = ""
输出:[]

示例 3:

输入:digits = "2"
输出:["a","b","c"]

提示:

  • 0 <= digits.length <= 4
  • digits[i] 是范围 ['2', '9'] 的一个数字。

参考代码

class Solution {
    public List<String> letterCombinations(String digits) {
        List<String> combinations = new ArrayList<String>();
        if (digits.length() == 0) {
            return combinations;
        }
        Map<Character, String> phoneMap = new HashMap<Character, String>() {{
            put('2', "abc");
            put('3', "def");
            put('4', "ghi");
            put('5', "jkl");
            put('6', "mno");
            put('7', "pqrs");
            put('8', "tuv");
            put('9', "wxyz");
        }};
        backtrack(combinations, phoneMap, digits, 0, new StringBuffer());
        return combinations;
    }

    public void backtrack(List<String> combinations, Map<Character, String> phoneMap, String digits, int index, StringBuffer combination) {
        if (index == digits.length()) {
            combinations.add(combination.toString());
        } else {
            char digit = digits.charAt(index);
            String letters = phoneMap.get(digit);
            int lettersCount = letters.length();
            for (int i = 0; i < lettersCount; i++) {
                combination.append(letters.charAt(i));
                backtrack(combinations, phoneMap, digits, index + 1, combination);
                combination.deleteCharAt(index);
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农阿祖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值