数学学习——常微分方程

只是记录一道题目而已,并没有什么新颖观点。
另外一道简单的题:
f ( x ) f(x) f(x)为连续函数,且由 ∫ 0 x t f ( t ) d t = x 2 + f ( x ) \int_0^x tf(t)dt = x^2+f(x) 0xtf(t)dt=x2+f(x)所确定,求 f ( x ) f(x) f(x)
解:
两边对 x x x求导,得    x f ( x ) = 2 x + f ′ ( x ) ,   d y d x = x y − 2 x ~~xf(x)=2x+f'(x),~\frac{dy}{dx}=xy-2x   xf(x)=2x+f(x), dxdy=xy2x,

已知   d y d x = P ( x ) y + Q ( x ) ~\frac{dy}{dx}=P(x)y+Q(x)  dxdy=P(x)y+Q(x)的解为   y = ( ∫ Q ( x ) e − ∫ P ( x ) d x + c ) e ∫ P ( x ) d x ~y=(\int Q(x)e^{-\int P(x)dx}+c)e^{\int P(x)dx}  y=(Q(x)eP(x)dx+c)eP(x)dx,

所以   y = ( 2 e − 1 2 x 2 + c ) e 1 2 x 2 , c   ~y=(2e^{-\frac12x^2}+c)e^{\frac12x^2},c~  y=(2e21x2+c)e21x2,c 是某个常数

  ∫ 0 x t f ( t ) d t = x 2 + f ( x )   ~\int_0^x tf(t)dt = x^2+f(x)~  0xtf(t)dt=x2+f(x) 中令 x = 0 x=0 x=0,得 f ( 0 ) = 0 f(0)=0 f(0)=0

  y = 0 , x = 0   ~y=0,x=0~  y=0,x=0 代入通解中,解得 c = − 2 c=-2 c=2,

因此, y = 2 ( 1 − e 1 2 x 2 ) y=2(1-e^{\frac12 x^2}) y=2(1e21x2)

一道有趣的题,跟上面有点像
  f ( x )   ~f(x)~  f(x) 为连续函数,且由   f ( x ) = x + ∫ 0 x ( x − t ) f ( t ) d t   ~f(x)=x+\int_0^x(x-t)f(t)dt~  f(x)=x+0x(xt)f(t)dt 所确定,求   f ( x ) ~f(x)  f(x)
解:
(如果与上面一样,采用同样的方法,很快地,就会发现,   ∫ 0 x ( x − t ) f ( t ) d t   ~\int_0^x(x-t)f(t)dt~  0x(xt)f(t)dt 在求导后居然等于0!!(   ( x − x ) f ( x ) = 0   ~(x-x)f(x)=0~  (xx)f(x)=0 ),然后就会得到   f ( x ) = x + c   ~f(x)=x+c~  f(x)=x+c ,代回式子重新检验一下就知道这是个错误结果,究其原因,就是这一步直接对   x   ~x~  x 出了问题,积分里面蕴含的关于   f ( x )   ~f(x)~  f(x) 的信息没有提取出来,没有充分应用。丢失关键信息所得到的结果,自然是与正确结果差之千里。我们的想法是要避免因为   ( x − t )   ~(x-t)~  (xt) 造成信息丢失
正确解法:
  f ( x ) = x + x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t   ~f(x)=x+x\int_0^xf(t)dt-\int_0^xtf(t)dt~  f(x)=x+x0xf(t)dt0xtf(t)dt ,对式子两边关于   x   ~x~  x 进行求导,得

d y d x = 1 + ∫ 0 x f ( t ) d t + x f ( x ) − x f ( x ) = 1 + ∫ 0 x f ( t ) d t \frac{dy}{dx}=1+\int_0^xf(t)dt+xf(x)-xf(x)=1+\int_0^xf(t)dt dxdy=1+0xf(t)dt+xf(x)xf(x)=1+0xf(t)dt,继续求导,得

d 2 y d x 2 = f ( x ) = y \frac{d^2y}{dx^2}=f(x)=y dx2d2y=f(x)=y,利用特征方程 r 2 = 1 r^2=1 r2=1,得   r 1 = − 1 , r 2 = 1 ~r_1=-1,r_2=1  r1=1,r2=1

所以,通解为   y = C 1 e − x + C 2 e x   ~y=C_1e^{-x}+C_2e^x~  y=C1ex+C2ex ,要想得到该题的特解,至少需要两个条件

  f ( x ) = x + ∫ 0 x ( x − t ) f ( t ) d t   ~f(x)=x+\int_0^x(x-t)f(t)dt~  f(x)=x+0x(xt)f(t)dt 中令   x = 0   ~x=0~  x=0 ,得   f ( 0 ) = 0   ~f(0)=0~  f(0)=0 

  d y d x = 1 + ∫ 0 x f ( t ) d t   ~\frac{dy}{dx}=1+\int_0^xf(t)dt~  dxdy=1+0xf(t)dt 中令   x = 0   ~x=0~  x=0 ,得   f ′ ( 0 ) = 1   ~f'(0)=1~  f(0)=1 

{ C 1 + C 2 = 0 − C 1 + C 2 = 1 \begin{cases}C_1+C_2=0\\\\-C_1+C_2=1\end{cases} C1+C2=0C1+C2=1,解得, { C 1 = − 1 2 C 2 = 1 2 \begin{cases}C_1=-\frac12\\\\C_2=\frac12\end{cases} C1=21C2=21

所以, f ( x ) = e x − e − x 2 f(x)=\frac{e^x-e^{-x}}{2} f(x)=2exex

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值