ZrT刺史
码龄4年
关注
提问 私信
  • 博客:3,181
    社区:1,852
    5,033
    总访问量
  • 3
    原创
  • 750,155
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:日本
  • 加入CSDN时间: 2020-09-02
博客简介:

m0_50538648的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得12次收藏
创作历程
  • 3篇
    2020年
成就勋章
兴趣领域 设置
  • 大数据
    hadoophivesparketl
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Flink状态管理

Flink状态管理State分类:ManagedState:被Flink管理的State,Flink对他有自己的管理和优化,绝大多数情况适用,RawState:需要手动管理…自定义Operator的时候需要,KeyedState:分组操作、OperatorState:有无分组的Operator都可以用;KeyedState:/** * 需求:使用KeyedState维护历史状态(历史值),获取输入数据的最大值 * 注意:我们只是为了演示KeyedState,实际中可以直接使用Flink提供好
原创
发布博客 2020.09.08 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink内存管理

Flink内存管理1.1问题引入Flink本身基本是以Java语言完成的,理论上说,直接使用JVM的虚拟机的内存管理就应该更简单方便,但Flink还是单独抽象出了自己的内存管理因为Flink是为大数据而产生的,而大数据使用会消耗大量的内存,而JVM的内存管理管理设计是兼顾平衡的,不可能单独为了大数据而修改,这对于Flink来说,非常的不灵活,而且频繁GC会导致长时间的机器暂停应用,这对于大数据的应用场景来说也是无法忍受的。JVM在大数据环境下存在的问题:1.Java 对象存储密度低。在HotSpo
原创
发布博客 2020.09.03 ·
382 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spark内存管理

Spark内存管理1.1.堆内内存和堆外内存1.1.1.堆内内存(on-heap)在JVM堆上分配的内存,在JVM垃圾回收GC范围内①:Driver堆内存:通过–driver-memory 或者spark.driver.memory指定,默认大小1G;②:Executor堆内存:通过–executor-memory 或者spark.executor.memory指定,默认大小1G在提交一个Spark Application时,Spark集群会启动Driver和Executor两种JVM进程。
原创
发布博客 2020.09.03 ·
2645 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

挖掘类标签开发案例_.mp4

发布资源 2020.09.03 ·
mp4

搭建虚拟机开发环境及节点间互信.mp4

发布资源 2020.09.03 ·
mp4

机器学习经典算法视频

发布资源 2020.09.02 ·
zip