- 博客(3)
- 资源 (3)
- 收藏
- 关注
原创 Flink状态管理
Flink状态管理State分类:ManagedState:被Flink管理的State,Flink对他有自己的管理和优化,绝大多数情况适用,RawState:需要手动管理…自定义Operator的时候需要,KeyedState:分组操作、OperatorState:有无分组的Operator都可以用;KeyedState:/** * 需求:使用KeyedState维护历史状态(历史值),获取输入数据的最大值 * 注意:我们只是为了演示KeyedState,实际中可以直接使用Flink提供好
2020-09-08 15:05:02 146
原创 Flink内存管理
Flink内存管理1.1问题引入Flink本身基本是以Java语言完成的,理论上说,直接使用JVM的虚拟机的内存管理就应该更简单方便,但Flink还是单独抽象出了自己的内存管理因为Flink是为大数据而产生的,而大数据使用会消耗大量的内存,而JVM的内存管理管理设计是兼顾平衡的,不可能单独为了大数据而修改,这对于Flink来说,非常的不灵活,而且频繁GC会导致长时间的机器暂停应用,这对于大数据的应用场景来说也是无法忍受的。JVM在大数据环境下存在的问题:1.Java 对象存储密度低。在HotSpo
2020-09-03 15:02:25 373
原创 Spark内存管理
Spark内存管理1.1.堆内内存和堆外内存1.1.1.堆内内存(on-heap)在JVM堆上分配的内存,在JVM垃圾回收GC范围内①:Driver堆内存:通过–driver-memory 或者spark.driver.memory指定,默认大小1G;②:Executor堆内存:通过–executor-memory 或者spark.executor.memory指定,默认大小1G在提交一个Spark Application时,Spark集群会启动Driver和Executor两种JVM进程。
2020-09-03 14:56:25 2613
挖掘类标签开发案例_.mp4
2020-09-03
搭建虚拟机开发环境及节点间互信.mp4
2020-09-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人