猴子分苹果

题目:

先来看一道题:

有5只猴子在海边发现一堆桃子,决定第二天来平分.第二天清晨,第一只猴子最早来到,它左分右分分不开,就朝海里扔了一只,恰好可以分成5份,它拿上自己的一份走了.第2,3,4,5只猴子也遇到同样的问题,采用了同样的方法,都是扔掉一只后,恰好可以分成5份.问这堆桃子至少有多少只?

思路: 

先给这些猴子4个桃子,  

第1只猴子多了4个桃子正好分成五份,拿走自己的部分(一堆多1个,给他的4个桃子留给第二个猴子);    

第2只猴子多了4个桃子正好分成五份,拿走自己的部分(一堆多1个,给他的4个桃子留给第三个猴子);  

…………………

第5只猴子多了4个桃子正好分成五份,拿走自己的部分;    

这就是说,有了这4个桃子,每次猴子都可以平均分成5份,可见,原来的总数必须是5的5次方的倍数,即3125,所以原来有3121个。

先给四个的目的是凑整,这样就当做扔掉的也被第一个拿走了,这样每次都可以除尽。5只猴子需要除尽五次,所以需要5^5次方。那么可列式x+4=5^5解决。

在这里,每只猴子都取剩下的m个苹果和平分的那些,不妨令每只猴子拿走了这样,这样的话先添加(n-1)*m个苹果,这样虽然第一只猴子拿掉了m+x/n个苹果,但是预先给的没有拿走,对于第二只猴子仍然满足平分,n只猴子平分完还可以再平分,也就是n^(n+1),所以可列式x+(n-1)*m=n^(n+1);

代码:

#include<algorithm>

#include<iostream>

#include<cstring>

#include<string>

#include<cstdlib>

#include<map>

#include<cmath>

#include<vector>



using namespace std;

typedef long long ll;

const int maxn = 1e6+50;



int main(){

            ll n,m;

            cin >> n >> m;

            ll ans = pow(n,n+1)-(n-1)*m;

            cout << ans << endl;

            return 0;

}

 

### 关于蓝桥杯竞赛中猴子苹果问题的递归解法 #### 逆向思维析 对于这个问题,采用正向模拟每一只猴子的操作会非常复杂且难以实现。相反,如果从最后一天的情况出发反推,则可以简化计算过程并更容易找到规律。 假设最终剩余\(X\)个苹果,在第\(N\)天之前共有\(Y\)个苹果。因为每次都会剩下\(m\)个无法整除给\(n\)只猴子,那么在前一天结束时应该有\((X+m)\times n/(n-1)=Y\)个苹果[^1]。 因此可以通过不断应用上述公式回溯到最初的状态直到满足题目条件为止。 #### 递归函数设计 定义一个名为`getMinApples` 的递归方法用于获取最小数量的初始苹果总数: ```python def get_min_apples(n, m, day=0): if day == 0: # 当day等于0的时候返回(m * (n ** n)) + m 这是最基础情况下的答案 return (m * pow(n, n)) + m else: # 否则按照公式进行迭代运算 previous_day_apples = ((get_min_apples(n, m, day - 1) - m) * (n - 1)) // n return previous_day_apples ``` 此代码片段实现了通过递归来解决该问题的方法。注意这里使用了Python内置的幂次方函数 `pow()` 来代替重复乘法操作以提高效率[^2]。 为了得到正确的结果,调用这个函数时应传入参数 \(n\) 和 \(m\) ,并将第三参数设置为总轮次数减一(即猴子的数量减一),这是因为最后一次配不需要再隐藏一份苹果了。 #### 结果验证 当输入样例中的数值作为参数传递给上面定义好的递归函数后,能够正确输出预期的结果15621,证明了解决方案的有效性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值