分治法 && 动态规划 洛谷P1115 最大子段和

题目

P1115 最大子段和
在这里插入图片描述

本题可采用两种方法

一、分治法(时间复杂度:logn)

*分治法可以通俗的解释为:把一片领土分解,分解为若干块小部分,然后一块块地占领征服,被分解的可以是不同的政治派别或是其他什么,然后让他们彼此异化。

*分治法使用场景

该问题的规模缩小到一定的程度就可以容易的解决。该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。 利用该问题分解出的子问题的解可以合并为该问题的解。 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题

*分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
合并:将各个子问题的解合并为原问题的解
简单来说: 当你发现原问题可以分成几个小问题,小问题与大问题可以用同一个递归函数解决。且跨越两个小问题之间的问题也可以求解。那么就可以考虑用分治法。 分治法通常可以将复杂度降到logn。

将区间分为两半。递归的处理左右区间。横跨中间的部分,可以求左区间最大后缀和+右区间最大前缀和来求解。 最终答案为max(左区间,右区间,横跨两个区间)的最大子段和。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10;
#define inf 0x3f3f3f3f
int a[N],n;
int solve(int l,int r)
{
	if(l>=r)return a[l];
	int mid=(l+r)/2;
	int res=max(solve(l,mid),solve(mid+1,r));
	int maxl=-inf,maxr=-inf,sum=0;
	for(int i=mid;i>=l;i--)
	{
		sum+=a[i];
		maxl=max(maxl,sum);
	}
	sum=0;
	for(int i=mid+1;i<=r;i++)
	{
		sum+=a[i];
		maxr=max(maxr,sum);
	}
	return max(maxl+maxr,res);
}

int main(){
	cin>>n;
	for(int i=1;i<=n;i++)cin>>a[i];
	cout<<solve(1,n);
	return 0;
}

二、动态规划 (时间复杂度:n)

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+10, inf=0x3f3f3f3f3f;
int f[N];
int main(){
	int n;
	cin>>n;
	int ans=-inf;
	for(int i=1; i<=n;i++){
		int x;
		cin>>x;
		f[i]=max(f[i-1]+x,x);
		ans=max(ans,f[i]); 
	}
	cout<<ans;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值