leetcode#235二叉搜索树的最近公共祖先

这篇博客探讨了如何在二叉搜索树中找到两个指定节点的最近公共祖先。提供了两种解决方案:一是递归方法,通过不断分解问题直至找到目标节点;二是作差法,利用二叉搜索树中序遍历的单调性进行判断。两种方法的时间复杂度均为O(n),但思路各异。示例代码详细展示了这两种方法的实现。
摘要由CSDN通过智能技术生成

题目

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

示例

在这里插入图片描述

注意

说明:

所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。

题解

1.递归

1.1思路

分解成子问题

1.2复杂度

时间O(n)
空间O(n)

1.3代码

TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) 
{
//递归导火索
        if(root==NULL||root==p||root==q) return root;//递归导火索 
        TreeNode* r=lowestCommonAncestor(root->left,p,q);//递归关系
        TreeNode* l=lowestCommonAncestor(root->right,p,q);
        if(l)//层层递归后
        return r;
        if(r)
        return l;
        return root;
        }
        };
        

参考链接:link

二.作差法

2.1思路

搜索二叉树中序展开单增;用两个节点与该节点的val的关系判断是否为一个节点。

2.2复杂度

2.3代码

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
     
        while ((p->val -root->val)* (q->val-root->val)>0)
         {
            if (p->val < root->val&&q->val<root->val)
             {
                root=root->left;
            }
            else if (p->val>root->val&&q->val>root->val)
             {
               root=root->right;
            }
        }
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值