题目
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例
注意
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。
题解
1.递归
1.1思路
分解成子问题
1.2复杂度
时间O(n)
空间O(n)
1.3代码
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)
{
//递归导火索
if(root==NULL||root==p||root==q) return root;//递归导火索
TreeNode* r=lowestCommonAncestor(root->left,p,q);//递归关系
TreeNode* l=lowestCommonAncestor(root->right,p,q);
if(l)//层层递归后
return r;
if(r)
return l;
return root;
}
};
参考链接:link
二.作差法
2.1思路
搜索二叉树中序展开单增;用两个节点与该节点的val的关系判断是否为一个节点。
2.2复杂度
2.3代码
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while ((p->val -root->val)* (q->val-root->val)>0)
{
if (p->val < root->val&&q->val<root->val)
{
root=root->left;
}
else if (p->val>root->val&&q->val>root->val)
{
root=root->right;
}
}
return root;
}
};