
QIL:《Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss》论文学习
CVPR2019Abstract我们建议通过一个可训练的量化器来学习量化激活和权重,从而转换和离散它们。具体地说,我们参数化量化区间,并通过直接最小化网络的任务损失得到其最优值。在4bit能达到32bit的精度,在更低比特也能减小精度下降。此外,我们的量化器可以在异构数据集上进行训练,因此可以用于量化预先训练过的网络,而无需访问它们的训练数据。用ResNet-18,-34和AlexNet,在imagenet上训练,达到了当时最先进的精度。Introduction(优化整网loss,学





