fadedtj
码龄4年
关注
提问 私信
  • 博客:57,689
    社区:12
    57,701
    总访问量
  • 18
    原创
  • 52,259
    排名
  • 74
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2020-09-14
博客简介:

m0_50811752的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    93
    当月
    0
个人成就
  • 获得77次点赞
  • 内容获得83次评论
  • 获得516次收藏
创作历程
  • 2篇
    2024年
  • 17篇
    2021年
成就勋章
TA的专栏
  • 大模型
    2篇
  • Transformer
    3篇
  • LSTF
    1篇
  • Vision Transformer
    1篇
  • self-attention
    1篇
  • Action Recognition
    4篇
  • 小样本学习
    4篇
  • 姿态估计
    4篇
  • Pose Estimation
    4篇
  • 数据集
    1篇
  • GNN
    4篇
  • 学习笔记
    2篇
兴趣领域 设置
  • 人工智能
    opencvpytorchnlp
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

344人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

书生大模型实战 【2】 ——上海人工智能实验室,InternLM开源社区

深入了解书生大模型,实践
原创
发布博客 2024.11.04 ·
677 阅读 ·
11 点赞 ·
0 评论 ·
11 收藏

书生大模型实战——上海人工智能实验室,InternLM开源社区

探索学习书生大模型,微调、训练、部署
原创
发布博客 2024.10.27 ·
392 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

DETR: DEtection + TRansformer 将transformer引入CV的首创

【目标检测】DETR —— End-to-End Object Detection with TransformersDETR原理论文名称:End-to-End Object Detection with Transformers原文地址:https://arxiv.org/abs/2005.12872开源地址:DETR原理任务:Object Detection 目标检测(主要关注于目标检测,作者还将DETR generalize 到 panoptic segmentation 任务上,DETR表
原创
发布博客 2021.05.14 ·
1018 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

AAAI 2021最佳论文 Informer

AAAI 2021最佳论文 Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting背景Transformer的问题Informer解决的问题第一作者来自北航的Haoyi Zhou,由北航、UC伯克利、 罗格斯大学以及北京国网富达公司共同协作完成。本文设计了一种专为LSTF (长序列时间序列预测)设计的基于Transformer模型 Informer,来解决Transformer在应用于LSTF时存在一
原创
发布博客 2021.05.25 ·
11205 阅读 ·
11 点赞 ·
12 评论 ·
92 收藏

2D与3D人体姿态估计数据集(统计)

相关数据集的快速发展促进了基于深度学习的姿态估计方法的发展。公共数据集为不同的方法提供了培训来源和公平的比较。考虑到数据集的规模和姿势和场景的多样性,在本文中,主要介绍了近年来的代表性数据集。它们中大多数都是高质量和大规模的数据集,在不同的拍摄场景中都有良好的注释。图像级2D单人数据集(待补充)图像级2D多人数据集(待补充)视频级2D单人数据集(待补充)3D单人数据集Human3.6MHuman3.6M是使用最广泛的多视图单人三维人体姿态基准。该数据集使用4个RGB摄像机、1个飞行时间传感器和1
原创
发布博客 2021.05.02 ·
5290 阅读 ·
5 点赞 ·
1 评论 ·
39 收藏

基于深度学习的单目2D/3D姿态估计综述(2021)

Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep Learning Perspective, 2021本文贡献整体介绍MHPE应用场景MHPE分类主要数据集期刊会议发展2020年针对MHPE的深度学习框架的概述难点现有解决方案人体表示Keypoint-based RepresentationModel-based Representation本文对2014年以来的2D和3D人体姿态估计方法进行全面调研,精选出里程碑的方
原创
发布博客 2021.04.29 ·
6725 阅读 ·
7 点赞 ·
2 评论 ·
67 收藏

3D人体姿态估计(介绍及论文归纳)

3D人体姿态估计基本概念姿态估计难点人体结构化特性2D 姿态估计任务挑战3D 姿态估计问题挑战应用方法数据集类型可用信息姿态数据集PoseTrackCrowdPoseHuman3.6MDensePoseCOCOMPIIFLICLSPRGB数据集Leeds Sports Pose (LSP) DatasetFLIC DatasetMPII Human Pose DatasetMS COCO Keypoint LeaderboardAI ChallengePoseTrackRGB+D 60/120 数据集当前主
原创
发布博客 2021.04.27 ·
9733 阅读 ·
12 点赞 ·
0 评论 ·
118 收藏

单目3D多人姿态估计网络(整合自上而下和自下而上网络)

Monocular 3D Multi-Person Pose Estimation by Intergrating Top-Down and Bottom-Up Networks 论文解读贡献实验结果整体框架3D多人姿态估计相关工作Network StructureGCN StructureTCN StructureIllustration of the heatmaps estimated from the bottom-up networkDetails of Semi-Supervised Learn
原创
发布博客 2021.04.27 ·
2715 阅读 ·
3 点赞 ·
1 评论 ·
12 收藏

PA-ResGCN for Skeleton-based Action Recognition论文解读与复现

基于骨架的动作识别:ResGCNResGCN论文解读ResGCN整体框架基于骨架的动作识别相关工作GCNMultiple Input Branches(MIB)ResGCNPart-wise Attention实验参数消融术研究ResGCN代码复现这是ACMMM2020的一篇文章,题目为:Stronger, Faster and More Explainable: A Graph Convolutional Baseline for Skeleton-based Action Recognition原文
原创
发布博客 2021.04.19 ·
2864 阅读 ·
3 点赞 ·
16 评论 ·
31 收藏

基于骨架的动作识别----论文总结

ST-GCN 2018Spatial Temporal Graph Convolutional Networks for Skeleton Based Action Recognition(AAAI 2018)原文地址CODE ST-GCNGCA-LSTM 2018Skeleton Based Human Action Recognition with Global Context-Aware Attention LSTM Networks(CVPR 2018)原文地址CODE GCA-LST
转载
发布博客 2021.04.18 ·
2663 阅读 ·
2 点赞 ·
0 评论 ·
55 收藏

Deep Learning with Python 学习笔记

Python深度学习--学习笔记深度学习神经网络数学基础神经网络的核心组件张量梯度神经网络入门电影评论分类——二分类问题新闻分类——多分类问题预测房价——回归问题机器学习基础深度学习用于计算机视觉卷积神经网络小型数据集上训练卷积神经网络深度学习用于文本和序列处理文本数据循环神经网络RNNs关注于LSTM、GRU(有兴趣可以了解了解Transformer,再去了解Informer)高效的深度学习最佳实践(没有讲解)生成式深度学习DeepDream神经风格迁移VAE 变分自编码器GAN总结Conclusion关
原创
发布博客 2021.04.10 ·
317 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Temporal-Relational CrossTransformers for Few-Shot Action Recognition 学习解读

Temporal-Relational CrossTransformers for Few-Shot Action RecognitionAbstractIntroductionRelated WorkMethodAblationsTRX with different Ω valuesThe impact of ordered tuplesMatching to multiple support set videoVisualising tuple matchesVarying the number of
原创
发布博客 2021.04.06 ·
1599 阅读 ·
2 点赞 ·
43 评论 ·
8 收藏

小样本学习--动作识别--文章(持续更新)

Few-shot Learning&Action Recognition--论文CMN (Compound Memory Networks), ECCV2018TARN (Temporal Attentive Relation Network), BMVC2019Permutation-invariant Attention, ECCV2020Based on Video Contents, WACV2020TRX (Temporal-Relational CrossTransformers), C
原创
发布博客 2021.04.05 ·
2525 阅读 ·
3 点赞 ·
6 评论 ·
23 收藏

Transformer初学习(一)

Transformer 初学习Self-attention为什么提出Self-attentionSelf-attention如何平行运算Self-attention为什么提出Self-attention我们现在有a1, a2, a3, a4四个输入,先来看一下RNN是怎么做的对于这个结构来说,必须要计算完前一个RNN,才能开始不断更新下一个RNN。也就是说,我们必须按照a1–>a2–>a3–>a4的顺序最终得到b4,不能够平行运算(Hard to parallel !)那么就有
原创
发布博客 2021.03.24 ·
262 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Pytorch学习笔记

Pytorch学习笔记供自己查阅方便1.torch.LongTensor 与 torch.Tensortorch.LongTensor 64位整数类型torch.Tensor = torch.FloatTensor 32位浮点类型2.Variable()计算图中用到(pytorch:动态图;tensorflow 1.X:静态图;2.X:动态图)tensor不能反向传播;variable可以反向传播3.log_softmax 与 softmax 区别log_softmax可以解决函数 上
原创
发布博客 2021.03.21 ·
203 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FSL-GNN复现过程与代码分析(二)

FSL-GNN复现过程与代码分析(三)原码地址:https://github.com/vgsatorras/few-shot-gnn论文链接:https://arxiv.org/pdf/1711.04043.pdf这一篇主要介绍model,包含有特征提取CNN以及图神经网络GNN
原创
发布博客 2021.03.20 ·
877 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

FSL-GNN复现过程 与 代码分析(一)

FSL-GNN复现过程与代码分析(一)原码地址:https://github.com/vgsatorras/few-shot-gnn论文链接:https://arxiv.org/pdf/1711.04043.pdf这篇文章提供的code非常优秀,在pytorch上复现起来比较容易,唯一就是label需要花时间找一下。这里我用到的数据集是mini_imagenet,在网上可以找到网盘的文件带有test、train、val的标注数据其中test包含12000个样本,train有38400个样本,
原创
发布博客 2021.03.18 ·
1129 阅读 ·
2 点赞 ·
1 评论 ·
18 收藏

Centos: NVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver

Centos无法连接NVIDIA驱动:NVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver重启服务器,GPU无法运行,torch运行CPU,nvidia-smi后输出NVIDIA-SMI has failed because it couldn’t communicate with the NVIDIA driver我们在终端输入nvcc -V发现驱动存在,查了很多方法,一般是在Ubuntu中讲解的这
原创
发布博客 2021.03.18 ·
4068 阅读 ·
4 点赞 ·
1 评论 ·
6 收藏

Linux Centos 3090 服务器环境配置(配置环境变量)

关于Linux Centos 3090ti 服务器 CUDA, CUDNN, Anaconda配置环境CUDA 11.1CUDNN 8.0.5Anaconda3其实网上很多linux环境配置,但今天在新的3090ti服务器上安装环境时还是有些卡壳,决定整理一下以供后续参考。CUDA 11.1由于30系列的显卡不支持CUDA10,我们可以先查看自己的显卡驱动以及搭配的CUDA版本。输入`nvidia-smi可以看到我的显卡驱动版本是455.45.01,支持CUDA11.1我们可以在此网址查看显卡
原创
发布博客 2021.01.24 ·
1748 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多