西安电子科技大学-模拟电子电路及技术基础大作业-电子称

简介

  本文旨在给学弟学妹做大作业时提供思路,学校作业可能会查重,学弟学妹使用的时候一定要读懂后进行修改!!!

  代码和报告见我的GitHub找相应的课程,求个Star:XDU_HW,里面还有其他课程的代码和报告

  如果发现哪里有错可以评论留言。

一、题目要求

  完成电子秤模拟部分电路设计
任务:
  电路总增益 40~60dB 可调,输入阻抗≥1MΩ,共模抑制比 KCMR≥80dB,宽:0Hz(DC)~20Hz;称重范围 0–100kg, 分辨率 0.1kg。
基本要求:
  完成上述要求的模拟部分电路理论设计与虚拟仿真,记录压敏电阻阻值变化和输出电压的关系,并画出 P–V 曲线。
扩展部分:
1.扩展量程为 0-500kg, 提高分辨率为 10g。
2.有兴趣的同学可以设计数模转换(A/D)和显示电路,加上 MCU,软件增
加自检、标定(校准)和测量等功能就可以完成数显电子秤总体设计。
3.有兴趣且学有余力的同学也可以完成实际硬件电路焊接、调试。

二、总体设计方案

  如下图所示,所测物体经过转换元件转换为电阻变化,在经过测量电路转化为电压变化,经过放大电路与滤波之后,得到所需信号。

在这里插入图片描述

图 1设计方案原理框图

三、电路原理

3.1转换电路

  将物体的重量信号转化为电子信号,用到的是压力传感器。这里我们使用电桥电路等效,作为转换电路。

  我们将直流驱动电源设置为10V,题目要求测重时,压敏电阻阻值变化,平衡电桥差模输出电压为0-10mV。如下图所示,有:

{ U 21 = 0 − 10 m V U 1 = 5 V U 2 m i n = 5 V U 2 m a x = 5.01 V = 10 × 500 + R 5 1000 + R 5 \begin{cases} U_{21}=0-10mV \\ U_1=5V \\ U_{2min}=5V \\ U_{2max}=5.01V=10\times \frac{500+R_5}{1000+R_5}\\ \end{cases} U21=010mVU1=5VU2min=5VU2max=5.01V=10×1000+R5500+R5

得到:
R 5 = 2 Ω R_5=2\Omega R5=2Ω

在这里插入图片描述

图 2转换电路

  为使分辨率达到0.1kg,设置变阻器R5的增量为0.1%

在这里插入图片描述

3.2差分放大电路

  如下图所示,该电路由三片op07运放组成, U o 1 U_{o1} Uo1 U o 2 U_{o2} Uo2 U o U_{o} Uo分别为三个运放的输出电压。

在这里插入图片描述

图 3差分放大电路

  分析电路可以知道,由于虚断,流过 R 2 R_2 R2 R 1 R_1 R1的电路相等,设为i,可以计算出理想输出电压 U o U_o Uo

{ i = U i 1 − U i 2 R 1 U o 1 = U i 1 + R 2 i U o 2 = U i 2 − R 2 i U o = R 4 R 3 ( U o 1 − U o 2 ) = R 4 R 3 ( 1 + 2 R 2 R 1 ) ( U i 1 − U i 2 ) \begin{cases} i=\frac{U_{i1}-U_{i2}}{R_1} \\ U_{o1}=U_{i1}+R_2i \\ U_{o2}=U_{i2}-R_2i \\ U_{o}=\frac{R_4}{R_3}(U_{o1}-U_{o2})=\frac{R_4}{R_3}(1+2\frac{R_2}{R_1})(U_{i1}-U_{i2}) \end{cases} i=R1Ui1Ui2Uo1=Ui1+R2iUo2=Ui2R2iUo=R3R4(Uo1Uo2)=R3R4(1+2R1R2)(Ui1Ui2)

  为使得输入阻抗大于 1 m Ω 1m\Omega 1mΩ,令:

{ R 2 = 10 M Ω R 1 = 1 M Ω R 3 = R 4 = 1 k Ω \begin{cases} R_{2}=10M\Omega \\ R_1=1M\Omega \\ R_3=R_4=1k\Omega \\ \end{cases} R2=10MΩR1=1MΩR3=R4=1kΩ

  则 U o = 5 ( U i 2 − U i 1 ) = − 5 ( U i 1 − U i 2 ) U_o=5(U_{i2}-U_{i1})=-5(U_{i1}-U_{i2}) Uo=5(Ui2Ui1)=5(Ui1Ui2)
  差模增益 A u d = − 5 A_{ud}=-5 Aud=5
  共模增益 A u c = 6.06 × 1 0 − 6 A_{uc}=6.06\times10^{-6} Auc=6.06×106
   K C M R ( d B ) = 20 l g ∣ A u d A u c ∣ = 118 d B > 80 d B K_{CMR}(dB)=20lg|\frac{A_{ud}}{A_{uc}}| =118dB>80dB KCMR(dB)=20lgAucAud=118dB>80dB

3.3滤波电路

  如下图所示,采用二阶压控电压源型滤波器。

在这里插入图片描述

图 4滤波器电路

  为简化参数,我们令

  根据 ,令,则:

  经测试,,在50Hz处的工频干扰衰减为16dB>15dB。

3.4二级放大电路

  为使得总增益为40-60dB可调,即:

  于是,令,则为可调电阻。

在这里插入图片描述

图 5二级放大电路

四、仿真

4.1仿真电路图

在这里插入图片描述

图 6仿真电路图

4.2仿真结果

  设置

4.2.1输入输出波形图

在这里插入图片描述

图 7输入输出波形图

  如上图所示,当输入电压差为9.98mV时输出信号为4.947V,增益约为:

4.2.2重量与输出电压关系

  根据题中描述的条件:1mV对应20g重量。画出重量与输出电压的关系图为:

在这里插入图片描述

图 8重量与输出电压关系图

在这里插入图片描述

  列成表格为:

重量kg输出电压V
00.00261
100.493
200.989
301.48
401.98
502.47
602.97
703.46
803.97
904.45
1004.95

4.2.3滤波器幅频特性图

  利用MULTISIM软件中的波特测试仪得到幅频特性图如下所示:
  由于软件没有直接标出坐标,我们从中选取了三个频率分别为1mHz,20Hz,50Hz的三个关键状态。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

图 9波特图

五、扩展部分

5.1扩展1

  为时量程扩展为0-500kg,分辨率为10g,根据上文转换电路的分析,可以得出只需要设置增量为0.002%,其他地方保持不变即可。电阻每改变0.002%,重量就改变10g,当接入电阻为时,表示500kg。

在这里插入图片描述

源程序

源程序可以在模拟电子电路及技术基础大作业-电子称multisim仿真下载

作业一(Matlab) 假设x=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),y=( 2.94, 4.53, 5.96, 7.88, 9.02, 10.94, 12.14, 13.96, 14.74, 16.68, 17.79, 19.67, 21.20, 22.07, 23.75, 25.22, 27.17, 28.84, 29.84, 31.78).请写出拟合的直线方程,并画图(包括原数据点及拟合的直线),请打印出来。 请使用线性回归模型来拟合bodyfat数据。数据集介绍可阅读:https://www.mathworks.com/help/nnet/examples/body-fat-estimation.html 在matlab中,在命令行中输入[X,Y] = bodyfat_dataset; 即可获得一个拥有13个属性,252个样本的数据集。使用前200个样本来获得模型,并写出你所获得的模型。使用后52个样本做测试,汇报你所获得的泛化误差。 编程实现对数回归,并给出教材89页上的西瓜数据集3.0上的结果。要求采用4折交叉验证法来评估结果。因为此处一共17个样本,你可以去掉最后一个样本,也可以用所有数据,然后测试用5个样本。在汇报结果时,请说明你的选择。请在二维图上画出你的结果(用两种不同颜色或者形状来标注类别),同时打印出完整的代码。 作业二 采用信息增益准则,基于表4.2中编号为1、2、3、6、7、9、10、14、15、16、17的11个样本的色泽、根蒂、敲声、文理属性构建决策树。(本次作业可以用笔算,鼓励编程实现,但都需要列出主要步骤,其中log2(3)=1.585,log2(5)=2.322,log2(6)=2.585,log2(7)=2.807,log2(9)=3.17,log2(10)=3.322,log2(11)=3.459) 用表4.2中编号为4、5、8、1112、13的样本做测试集,对上题的训练数据采用预剪枝策略构建决策树,并汇报验证集精度。 用表4.2中编号为4、5、8、1112、13的样本做测试集,对题1所构建的决策树进行后剪枝,并汇报验证集精度。 作业三(Matlab) 试编程实现累积BP算法,在西瓜数据集2.0上(用训练数据)训练一个单隐层网络,用验证集计算出均方误差。要自己实现,不能直接调用现成的库函数。 作业四 下载并安装libsvm,http://www.csie.ntu.edu.tw/~cjlin/libsvm/ ,在西瓜数据集3.0a上分别用线性核训练一个SVM。用正类1-6和负类9-14作为训练集,其余作为测试集。C取不同的值,其它参数设为默认值。作出测试正确率随C取值变化的图,C=[1 100 10000 10^6 10^8]。 换成高斯核(宽度设为1),重复上题的步骤。 作业五 以西瓜数据集2.0(见教材76页表4.1)中样本1--16为训练集训练一个朴素贝叶斯分类器,对测试样本17进行分类。请写出详细的计算过程。 假设x_k是一个班上学生的分数,对应的分数及其分布是 x_1=30, P1=0.5,一共有14个学生; x_2=18, P2=mu,有6个学生; x_3=20, P3=2mu,有9个学生; x_4=23, P4=0.5-3mu,有10个学生; 通过最大对数似然法求出mu的值。 作业六(Python) 1 使用PCA对Yale人脸数据集进行降维,并分别观察前20、前100个特征向量所对应的图像。请随机选取3张照片来对比效果。数据集http://vision.ucsd.edu/content/yale-face-database
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值