CV基础
m0_50903443
这个作者很懒,什么都没留下…
展开
-
ResNext
ResNeXt:将VGG、ResNet和Inception中优秀的思想归纳并演绎,得到强大的ResNeXt结构ResNeXt结构上采用多个Building Block堆叠,结构简洁,Building Block中采用残差结构,同时采用Aggregated Transform,即Split-Transform-Merge思想VGG:结构简洁, (超参只需关心深度和宽度)堆叠使用3*3卷积,广泛应用到各视觉任务中ResNet:沿用VGG的简介结构设计,同时堆叠的Building Block采用残差结构原创 2020-12-03 16:13:41 · 229 阅读 · 0 评论 -
ResNet
重要意义:引入shortcut connection,让网络信息有效传播,梯度反传顺畅,使得数千层卷积神经网络都可以收敛残差结构:Identity与F(x)结合形式探讨:.A-全零填充:维度增加的部分采用零来填充B-网络层映射:当维度发生变化时,通过网络层映射(例如:1+1卷积)特征图至相同维度C-所有Shortcut均通过网络层映射(例如:1*1卷积)有点:1有利于梯度传播 2.提供了恒等映射的可能里面模块的堆叠方式Basic:两个3X3卷积堆叠Bottleneck:利用1X1卷积减少原创 2020-11-30 20:52:11 · 225 阅读 · 0 评论 -
GoogleNet的inception
V3版本很重就是后面几个inception,包含了卷积分解:非对称卷积,卷积池化融合,减少计算量,同时损失信息不大,利用步长等于2代替池化,利用小卷积核融合代替大卷积核得到相同感受野,利用1*1分解为几个卷积一起计算融合,减少计算量,又不损失信息lass Inception3(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, ince.原创 2020-11-28 16:25:04 · 300 阅读 · 0 评论 -
GoogleNet_V3,构建程序
导入必要模块import osimport numpy as npimport torch.nn as nnimport torchfrom torch.utils.data import DataLoaderimport torchvision.transforms as transformsimport torch.optim as optimfrom matplotlib import pyplot as plt导入数据处理模块和改造后的标签平滑损失函数from GoogLeNe原创 2020-11-28 15:56:51 · 322 阅读 · 0 评论