一、项目技术
开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js
二、项目内容和项目介绍
🎈1.项目内容
基于Python的餐饮外卖平台数据分析与可视化是一种强大的工具,它能够帮助外卖平台深入了解市场运作、消费者行为以及商家经营策略。以下是对该技术的详细介绍:
一、技术背景与意义
随着大数据和人工智能技术的快速发展,数据分析在各行各业中扮演着越来越重要的角色。在餐饮外卖行业,数据分析和可视化技术能够帮助平台更好地理解消费者需求、优化服务流程、提升运营效率,并为业务决策提供有力支持。
🎈2.项目介绍
二、技术栈与工具
开发语言:Python,以其简洁易读、高效灵活的特点,成为数据分析领域的首选语言。Python拥有丰富的库和工具,如NumPy、Pandas等,能够轻松处理和分析大规模数据。
数据库:MySQL等关系型数据库,用于存储和管理外卖平台的订单数据、用户信息、商家信息等。这些数据库提供了高效的数据查询和存储功能,为数据分析提供了坚实的基础。
数据可视化工具:Echarts、Matplotlib、Seaborn等,这些工具能够将复杂的数据分析结果以直观、易懂的方式呈现出来,如饼状图、条形图、折线图、散点图等。通过可视化,平台能够更容易地发现数据中的规律和趋势。
Web框架:Flask或Django等,这些框架提供了构建Web应用所需的各种功能和组件,如路由、模板渲染、数据库交互等。通过Web框架,平台可以搭建一个功能完善的数据分析与可视化系统。
三、数据分析流程
数据收集:通过API接口或爬虫技术,从外卖平台收集订单数据、用户信息、商家信息等。这些数据需要进行预处理,包括数据清洗、格式转换等,以确保数据的准确性和一致性。
数据探索:利用Pandas等库对数据进行初步的探索和分析,了解数据的分布、特征等。这一步骤有助于发现数据中的异常值和潜在问题,为后续的数据分析提供指导。
数据建模与分析:根据业务需求,选择合适的数据模型和算法进行分析。例如,可以利用机器学习算法进行用户行为预测、商家推荐等;也可以利用统计方法进行订单量预测、用户画像构建等。
结果可视化:将分析结果以图表的形式呈现出来,以便更好地理解和解释数据。可视化图表可以帮助平台管理者快速把握市场动态和消费者需求,为决策提供支持。
三、核心代码
部分代码:
def config_page(request):
'''
获取参数信息
:return:
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get('req_dict')
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = config.page(config, config, req_dict)
return JsonResponse(msg)
def config_list(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get("req_dict")
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = config.page(config, config, req_dict)
return JsonResponse(msg)
def config_info(request, id_):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
data = config.getbyid(config, config, int(id_))
if len(data) > 0:
msg['data'] = data[0]
return JsonResponse(msg)
def config_detail(request, id_):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
data = config.getbyid(config, config, int(id_))
if len(data) > 0:
msg['data'] = data[0]
return JsonResponse(msg)
def config_save(request):
'''
创建参数信息
:return:
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
req_dict = request.session.get('req_dict')
param1 = config.getbyparams(config, config, req_dict)
if param1:
msg['code'] = id_exist_code
msg['msg'] = mes.id_exist_code
return JsonResponse(msg)
error = config.createbyreq(config, config, req_dict)
logging.warning("save_config.res=========>{}".format(error))
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def config_add(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
req_dict = request.session.get("req_dict")
error = config.createbyreq(config, config, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def config_update(request):
'''
更新参数信息
:return:
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code, "data": {}}
req_dict = request.session.get('req_dict')
config.updatebyparams(config, config, req_dict)
return JsonResponse(msg)
四、效果图