(采油区域)二维前缀和+动态规划关系+分类讨论

题目

在这里插入图片描述
oj平台


逐步解析

第一步:二维前缀和处理

什么是前缀和?比如对于一个一维数组 nums,他的前 i 个数的总和就是下标i的前缀和,即 sum[i] 表示前i个 nums 数组元素之和。

一维数组前缀和有以下关系: s u m [ i ] = s u m [ i − 1 ] + n u m s [ i − 1 ] sum[i] = sum[i-1]+nums[i-1] sum[i]=sum[i1]+nums[i1]

  • 现在我们对前缀和有了一定的了解,那么二维数组的前缀和该如何表示呢?
    我直接给出结论: s u m [ i ] [ j ] = n u m s [ i ] [ j ] + s u m [ i − 1 ] [ j ] + s u m [ i ] [ j − 1 ] sum[i] [j]= nums[i][j] + sum[i-1] [j]+sum[i] [j-1] sum[i][j]=nums[i][j]+sum[i1][j]+sum[i][j1]

这个关系对应的位置实际上就是在 [i,j] 矩阵的基础上,加上左边和上面,最后不断递推便可得到二维的前缀和

现在给出前缀和处理代码:

//求出二维前缀和
for(int i=1;i<=n;i++){
   
    for(int j=1;j<=m;j++){
   
        int t;cin>>t;
        sum [i][j] = sum [i-1][j] + sum [i][j-1] - sum [i-1][j-1] + t;
    }
}

第二步:根据二维前缀和得出某k区间和

行和列都为 k 的矩阵(以 [i,j] 为右下角)和都可以表示为: s u m [ i ] [ j ] − s u m [ i − k ] [ j ] − s u m [ i ] [ j − k ] + s u m [ i − k ] [ j − k ] sum[i][j] - sum[i-k][j] - sum[i][j-k] + sum[i-k][j-k] sum[i][j]sum[ik][j]sum[i][jk]+sum[ik][jk](道理很简单自己可以去画图观察)

//用于形成上面这个区间值的函数
int getVal(int i,int j){
   
    return sum[i][j] - sum[i-k][j] - sum[i][j-k] + sum[i-k][j-k];
}

后面求和都用到该函数


第三步:以第二步为基础得出任意一点的左\右上角、左\右下角、任意两列\两行的最大k区域和值

l u [ i ] [ j ] lu[i][j] lu[i][j] l d [
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值