文章目录
题目
逐步解析
第一步:二维前缀和处理
什么是前缀和?比如对于一个一维数组
nums
,他的前i
个数的总和就是下标i
的前缀和,即sum[i]
表示前i个nums
数组元素之和。一维数组前缀和有以下关系: s u m [ i ] = s u m [ i − 1 ] + n u m s [ i − 1 ] sum[i] = sum[i-1]+nums[i-1] sum[i]=sum[i−1]+nums[i−1]
- 现在我们对前缀和有了一定的了解,那么二维数组的前缀和该如何表示呢?
我直接给出结论: s u m [ i ] [ j ] = n u m s [ i ] [ j ] + s u m [ i − 1 ] [ j ] + s u m [ i ] [ j − 1 ] sum[i] [j]= nums[i][j] + sum[i-1] [j]+sum[i] [j-1] sum[i][j]=nums[i][j]+sum[i−1][j]+sum[i][j−1]
这个关系对应的位置实际上就是在 [i,j]
矩阵的基础上,加上左边和上面,最后不断递推便可得到二维的前缀和
现在给出前缀和处理代码:
//求出二维前缀和
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int t;cin>>t;
sum [i][j] = sum [i-1][j] + sum [i][j-1] - sum [i-1][j-1] + t;
}
}
第二步:根据二维前缀和得出某k区间和
行和列都为
k
的矩阵(以[i,j]
为右下角)和都可以表示为: s u m [ i ] [ j ] − s u m [ i − k ] [ j ] − s u m [ i ] [ j − k ] + s u m [ i − k ] [ j − k ] sum[i][j] - sum[i-k][j] - sum[i][j-k] + sum[i-k][j-k] sum[i][j]−sum[i−k][j]−sum[i][j−k]+sum[i−k][j−k](道理很简单自己可以去画图观察)
//用于形成上面这个区间值的函数
int getVal(int i,int j){
return sum[i][j] - sum[i-k][j] - sum[i][j-k] + sum[i-k][j-k];
}
后面求和都用到该函数
第三步:以第二步为基础得出任意一点的左\右上角、左\右下角、任意两列\两行的最大k区域和值
量 | l u [ i ] [ j ] lu[i][j] lu[i][j] | l d [ |
---|