如何区分漫威军团与灭霸军团--支持向量机(小白篇)

本文通过复联3的场景引入,解释了支持向量机(SVM)的概念。SVM是一种用于分类的算法,目标是找到最大化间隔的超平面将两类数据分开。文章通过硬间隔和软间隔的概念,说明了SVM如何处理线性可分和非线性可分的数据,并介绍了SVM在实际应用中的选择策略。同时,文章以幽默的方式帮助读者理解复杂的算法概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先让我们一起来回顾一下复联3里的漫威军团和灭霸军团的经典群殴画面:

场面可以说是一片混乱。现在,如果你是一台装有武装导弹的卫星AI,在你发射导弹支援漫威军团之前,你要做的第一件事情就是:如何区分漫威军团和灭霸军团?

当然这个问题肯定有很多答案,但是提出这个问题的目的是引出今天的知识点——支持向量机(Support Vector Machine 简称SVM)。

目录

SVM是什么?

SVM要做什么?

SVM它怎么做的?


SVM是什么?

支持向量机的英文名字叫 support vector machine,这里的machine不是指一种机器,而是指一种算法(algorithm)。Support vector这个就比较复杂难解释一点了,但是我昨晚突发奇想,想到了一个比较直观的解释。先看下图:

 图中两人一个是美国队长,一个是黑豹。他们在大战中充当短跑健将,一往无前,舍生取义冲在第一线。他们是我们心中的英雄,但是在支持向量机看来,他们就是最好的支持向量(support vector)。如下图,黄色荧光笔圈出的就是支持向量(support vector)。无论后面有多少个,决定分割线的关键点就在于这些support vector的位置。就像是决定战争胜负的关键,不在于小兵有多少,而在于这些冲在最前面的漫威英雄。

总的来说SVM是一种由支持向量来划分两类数据的一种算法,于是叫支持向量机。

SVM要做什么?

支持向量机的目的就是将两种不同的东西分开,更科学定义就是“二元线性分类器”。进一步解释为:在一个三维空间里,用一个二维的平面将不同类型的东西分开,或是在一张二维的纸上,用一条一维的线将不同的点区别开。如下图所示:

 

更进一步定义为:在n维的空间里,用n-1维的子空间正确划分n维里的数据集。这个n-1维的子空间也叫做超平面(Hyperplane)。

当然这种超平面会有无限多条,问题是选择哪一条呢?比如为了划分两个军团,下图有三个hyperplan,h1,h2 和h3。 我们应该选择哪一条分开他们呢?

 h2肯定是不行的,他把美国队长分到了对面去了。h1好像可以,但是分割线离两边英雄太近容易擦枪走火,不够稳定,也叫做鲁棒性(Robust)差。h3最好了,可以看出这条线给双方都留有一定的距离。这个距离越大越好,这个距离叫做Margin。

支持向量机的目的是找出这一条距离(Margin)最大的一个超平面(Hyperplan)。如果是在战斗前两军对峙的情况下还好,如下图:

如果我们可以清晰的找出一条线的情况并且双方英雄们都冲在最前面,这个就叫做硬间隔支持向量机,作用在数据线性可分的情况下。 但是如果正式开始冲刺,有些小兵冲在所有大军的前面,如下图:

 

这个时候,双方短兵相接相接,在支持向量的间隔之类还有双方的小兵。这种情况就可以叫做软间隔svm, 也是作用在线性的情况下,但是就不太可分了。这些小兵也可以叫做松弛变量。

 最后一种情况:当战场上双方将领都冲入对方腹地打作一团的时候:

 这个是数据就不再是线性可分了,svm就会用到软间隔+核计算。

总的来说svm分为:

1. 线性可分

        硬间隔svm

        软间隔svm

2.非线性

        svm+核计算

 

SVM它怎么做的?

至于它具体怎么做的,在csdn上搜索SVM,你会看到一大堆svm原理公式推导。因为这是小白科普篇,在这里就不详述了。(其实是因为我菜哈哈哈哈哈哈哈哈😄)

这里有几篇不错的svm详细解释的链接:

arrow的SVM学习总结 https://blog.csdn.net/myarrow/article/details/51261971

支持向量机通俗导论(理解SVM的三层境界)https://blog.csdn.net/passball/article/details/7661887

知乎:https://zhuanlan.zhihu.com/p/24638007

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rex不辣不辣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值